Improve AI logic

This commit is contained in:
Urtzi Alfaro
2025-11-05 13:34:56 +01:00
parent 5c87fbcf48
commit 394ad3aea4
218 changed files with 30627 additions and 7658 deletions

View File

@@ -1,449 +0,0 @@
# Demo Seed Implementation - COMPLETE 
**Date**: 2025-10-16
**Status**: <<EFBFBD> **IMPLEMENTATION COMPLETE** <<EFBFBD>
**Progress**: **~90% Complete** (All major components done)
---
## <<3C> Executive Summary
The comprehensive demo seed system for Bakery IA is now **functionally complete**. All 9 planned phases have been implemented following a consistent Kubernetes Job architecture with JSON-based configuration. The system generates **realistic, Spanish-language demo data** across all business domains with proper date adjustment and alert generation.
### Key Achievements:
-  **8 Services** with seed implementations
-  **9 Kubernetes Jobs** with Helm hook orchestration
-  **~600-700 records** per demo tenant
-  **40-60 alerts** generated per session
-  **100% Spanish** language coverage
-  **Date adjustment** system throughout
-  **Idempotent** operations everywhere
---
## =<3D> Complete Implementation Matrix
| Phase | Component | Status | JSON Config | Seed Script | K8s Job | Clone Endpoint | Records/Tenant |
|-------|-----------|--------|-------------|-------------|---------|----------------|----------------|
| **Infrastructure** | Date utilities |  100% | - | `demo_dates.py` | - | - | - |
| | Alert generator |  100% | - | `alert_generator.py` | - | - | - |
| **Phase 1** | Stock |  100% | `stock_lotes_es.json` | `seed_demo_stock.py` |  |  Enhanced | ~125 |
| **Phase 2** | Customers |  100% | `clientes_es.json` | `seed_demo_customers.py` |  |  Enhanced | 15 |
| | **Orders** |  100% | `pedidos_config_es.json` | `seed_demo_orders.py` |  |  Enhanced | 30 + ~150 lines |
| **Phase 3** | **Procurement** |  100% | `compras_config_es.json` | `seed_demo_procurement.py` |  |  Existing | 8 + ~70 reqs |
| **Phase 4** | Equipment |  100% | `equipos_es.json` | `seed_demo_equipment.py` |  |  Enhanced | 13 |
| **Phase 5** | Quality Templates |  100% | `plantillas_calidad_es.json` | `seed_demo_quality_templates.py` |  |  Enhanced | 12 |
| **Phase 6** | Users |  100% | `usuarios_staff_es.json` | `seed_demo_users.py` (updated) |  Existing | N/A | 14 |
| **Phase 7** | **Forecasting** |  100% | `previsiones_config_es.json` | `seed_demo_forecasts.py` |  | N/A | ~660 + 3 batches |
| **Phase 8** | Alerts |  75% | - | In generators | - | 3/4 services | 40-60/session |
| **Phase 9** | Testing | =<3D> 0% | - | - | - | - | - |
**Overall Completion: ~90%** (All implementation done, testing remains)
---
## <<3C> Final Data Volume Summary
### Per Tenant (Individual Bakery / Central Bakery)
| Category | Entity | Count | Sub-Items | Total Records |
|----------|--------|-------|-----------|---------------|
| **Inventory** | Ingredients | ~50 | - | ~50 |
| | Suppliers | ~10 | - | ~10 |
| | Recipes | ~30 | - | ~30 |
| | Stock Batches | ~125 | - | ~125 |
| **Production** | Equipment | 13 | - | 13 |
| | Quality Templates | 12 | - | 12 |
| **Orders** | Customers | 15 | - | 15 |
| | Customer Orders | 30 | ~150 lines | 180 |
| | Procurement Plans | 8 | ~70 requirements | 78 |
| **Forecasting** | Historical Forecasts | ~450 | - | ~450 |
| | Future Forecasts | ~210 | - | ~210 |
| | Prediction Batches | 3 | - | 3 |
| **Users** | Staff Members | 7 | - | 7 |
| **TOTAL** | **All Entities** | **~763** | **~220** | **~1,183** |
### Grand Total (Both Tenants)
- **Total Records**: ~2,366 records across both demo tenants
- **Total Alerts**: 40-60 per demo session
- **Languages**: 100% Spanish
- **Time Span**: 60 days historical + 14 days future = 74 days of data
---
## =<3D> Files Created (Complete Inventory)
### JSON Configuration Files (13)
1. `services/inventory/scripts/demo/stock_lotes_es.json` - Stock configuration
2. `services/orders/scripts/demo/clientes_es.json` - 15 customers
3. `services/orders/scripts/demo/pedidos_config_es.json` - Orders configuration
4. `services/orders/scripts/demo/compras_config_es.json` - Procurement configuration
5. `services/production/scripts/demo/equipos_es.json` - 13 equipment items
6. `services/production/scripts/demo/plantillas_calidad_es.json` - 12 quality templates
7. `services/auth/scripts/demo/usuarios_staff_es.json` - 12 staff users
8. `services/forecasting/scripts/demo/previsiones_config_es.json` - Forecasting configuration
### Seed Scripts (11)
9. `shared/utils/demo_dates.py` - Date adjustment utility
10. `shared/utils/alert_generator.py` - Alert generation utility
11. `services/inventory/scripts/demo/seed_demo_stock.py` - Stock seeding
12. `services/orders/scripts/demo/seed_demo_customers.py` - Customer seeding
13. `services/orders/scripts/demo/seed_demo_orders.py` - Orders seeding
14. `services/orders/scripts/demo/seed_demo_procurement.py` - Procurement seeding
15. `services/production/scripts/demo/seed_demo_equipment.py` - Equipment seeding
16. `services/production/scripts/demo/seed_demo_quality_templates.py` - Quality templates seeding
17. `services/auth/scripts/demo/seed_demo_users.py` - Users seeding (updated)
18. `services/forecasting/scripts/demo/seed_demo_forecasts.py` - Forecasting seeding
### Kubernetes Jobs (9)
19. `infrastructure/kubernetes/base/jobs/demo-seed-stock-job.yaml`
20. `infrastructure/kubernetes/base/jobs/demo-seed-customers-job.yaml`
21. `infrastructure/kubernetes/base/jobs/demo-seed-orders-job.yaml`
22. `infrastructure/kubernetes/base/jobs/demo-seed-procurement-job.yaml`
23. `infrastructure/kubernetes/base/jobs/demo-seed-equipment-job.yaml`
24. `infrastructure/kubernetes/base/jobs/demo-seed-quality-templates-job.yaml`
25. `infrastructure/kubernetes/base/jobs/demo-seed-forecasts-job.yaml`
26. *(Existing)* `infrastructure/kubernetes/base/jobs/demo-seed-users-job.yaml`
27. *(Existing)* `infrastructure/kubernetes/base/jobs/demo-seed-tenants-job.yaml`
### Clone Endpoint Enhancements (4)
28. `services/inventory/app/api/internal_demo.py` - Enhanced with stock date adjustment + alerts
29. `services/orders/app/api/internal_demo.py` - Enhanced with customer/order date adjustment + alerts
30. `services/production/app/api/internal_demo.py` - Enhanced with equipment/quality date adjustment + alerts
### Documentation (7)
31. `DEMO_SEED_IMPLEMENTATION.md` - Original technical guide
32. `KUBERNETES_DEMO_SEED_GUIDE.md` - K8s pattern guide
33. `START_HERE.md` - Quick start guide
34. `QUICK_START.md` - Developer reference
35. `README_DEMO_SEED.md` - Project overview
36. `PROGRESS_UPDATE.md` - Session 1 progress
37. `PROGRESS_SESSION_2.md` - Session 2 progress
38. `IMPLEMENTATION_COMPLETE.md` - This document
**Total Files Created/Modified: 38**
---
## =<3D> Deployment Instructions
### Quick Deploy (All Seeds)
```bash
# Deploy entire Bakery IA system with demo seeds
helm upgrade --install bakery-ia ./charts/bakery-ia
# Jobs will run automatically in order via Helm hooks:
# Weight 5: demo-seed-tenants
# Weight 10: demo-seed-users
# Weight 15: Ingredient/supplier/recipe seeds (existing)
# Weight 20: demo-seed-stock
# Weight 22: demo-seed-quality-templates
# Weight 25: demo-seed-customers, demo-seed-equipment
# Weight 30: demo-seed-orders
# Weight 35: demo-seed-procurement
# Weight 40: demo-seed-forecasts
```
### Verify Deployment
```bash
# Check all demo seed jobs
kubectl get jobs -n bakery-ia | grep demo-seed
# Check logs for each job
kubectl logs -n bakery-ia job/demo-seed-stock
kubectl logs -n bakery-ia job/demo-seed-orders
kubectl logs -n bakery-ia job/demo-seed-procurement
kubectl logs -n bakery-ia job/demo-seed-forecasts
# Verify database records
psql $INVENTORY_DATABASE_URL -c "SELECT tenant_id, COUNT(*) FROM stock GROUP BY tenant_id;"
psql $ORDERS_DATABASE_URL -c "SELECT tenant_id, COUNT(*) FROM orders GROUP BY tenant_id;"
psql $PRODUCTION_DATABASE_URL -c "SELECT tenant_id, COUNT(*) FROM equipment GROUP BY tenant_id;"
psql $FORECASTING_DATABASE_URL -c "SELECT tenant_id, COUNT(*) FROM forecasts GROUP BY tenant_id;"
```
### Test Locally (Development)
```bash
# Test individual seeds
export INVENTORY_DATABASE_URL="postgresql+asyncpg://..."
python services/inventory/scripts/demo/seed_demo_stock.py
export ORDERS_DATABASE_URL="postgresql+asyncpg://..."
python services/orders/scripts/demo/seed_demo_customers.py
python services/orders/scripts/demo/seed_demo_orders.py
python services/orders/scripts/demo/seed_demo_procurement.py
export PRODUCTION_DATABASE_URL="postgresql+asyncpg://..."
python services/production/scripts/demo/seed_demo_equipment.py
python services/production/scripts/demo/seed_demo_quality_templates.py
export FORECASTING_DATABASE_URL="postgresql+asyncpg://..."
python services/forecasting/scripts/demo/seed_demo_forecasts.py
```
---
## <<3C> Data Quality Highlights
### Spanish Language Coverage 
-  All product names (Pan de Barra, Croissant, Baguette, etc.)
-  All customer names and business names
-  All quality template instructions and criteria
-  All staff names and positions
-  All order notes and special instructions
-  All equipment names and locations
-  All ingredient and supplier names
-  All alert messages
### Temporal Distribution 
-  **60 days historical data** (orders, forecasts, procurement)
-  **Current/today data** (active orders, pending approvals)
-  **14 days future data** (forecasts, scheduled orders)
-  **All dates adjusted** relative to session creation time
### Realism 
-  **Weekly patterns** in demand forecasting (higher weekends for pastries)
-  **Seasonal adjustments** (growing demand for integral products)
-  **Weather impact** on forecasts (temperature, precipitation)
-  **Traffic correlation** with bakery demand
-  **Safety stock buffers** (10-30%) in procurement
-  **Lead times** realistic for each ingredient type
-  **Price variations** (<28>5%) for realism
-  **Status distributions** realistic across entities
---
## =<3D> Forecasting Implementation Details (Just Completed)
### Forecasting Data Breakdown:
- **15 products** with demand forecasting
- **30 days historical** + **14 days future** = **44 days per product**
- **660 forecasts per tenant** (15 products <20> 44 days)
- **3 prediction batches** per tenant with different statuses
### Forecasting Features:
- **Weekly demand patterns** (higher weekends for pastries, higher weekdays for bread)
- **Weather integration** (temperature, precipitation impact on demand)
- **Traffic volume correlation** (higher traffic = higher demand)
- **Seasonality** (stable, growing trends)
- **Multiple algorithms** (Prophet, ARIMA, LSTM)
- **Confidence intervals** (15-20% for historical, 20-25% for future)
- **Processing metrics** (150-500ms per forecast)
- **Central bakery multiplier** (4.5x higher demand than individual)
### Sample Forecasting Data:
```
Product: Pan de Barra Tradicional
Base Demand: 250 units/day (individual) / 1,125 units/day (central)
Weekly Pattern: Higher Mon/Fri/Sat (1.1-1.3x), Lower Sun (0.7x)
Variability: 15%
Weather Impact: +5% per 10<31>C above 22<32>C
Rain Impact: -8% when raining
```
---
## = Procurement Implementation Details
### Procurement Data Breakdown:
- **8 procurement plans** per tenant
- **5-12 requirements** per plan
- **~70 requirements per tenant** total
- **12 ingredient types** (harinas, levaduras, l<>cteos, chocolates, embalaje, etc.)
### Procurement Features:
- **Temporal spread**: 25% completed, 37.5% in execution, 25% pending, 12.5% draft
- **Plan types**: Regular (75%), Emergency (15%), Seasonal (10%)
- **Strategies**: Just-in-time (50%), Bulk (30%), Mixed (20%)
- **Safety stock calculations** (10-30% buffer)
- **Net requirement** = Total needed - Available stock
- **Demand breakdown**: Order demand, Production demand, Forecast demand, Buffer
- **Lead time tracking** with suggested and latest order dates
- **Performance metrics** for completed plans (fulfillment rate, on-time delivery, cost accuracy)
- **Risk assessment** (low to critical supply risk levels)
### Sample Procurement Plan:
```
Plan: PROC-SP-REG-2025-001 (Individual Bakery)
Status: In Execution
Period: 14 days
Requirements: 8 ingredients
Total Cost: <20>3,245.50
Safety Buffer: 20%
Supply Risk: Low
Strategy: Just-in-time
```
---
## <<3C> Architecture Patterns (Established & Consistent)
### 1. JSON Configuration Pattern
```json
{
"configuracion_[entity]": {
"param1": value,
"distribucion_temporal": {...},
"productos_demo": [...]
}
}
```
### 2. Seed Script Pattern
```python
def load_config() -> dict
def calculate_date_from_offset(offset: int) -> datetime
async def seed_for_tenant(db, tenant_id, data) -> dict
async def seed_all(db) -> dict
async def main() -> int
```
### 3. Kubernetes Job Pattern
```yaml
metadata:
annotations:
"helm.sh/hook": post-install,post-upgrade
"helm.sh/hook-weight": "NN"
spec:
initContainers:
- wait-for-migration
- wait-for-dependencies
containers:
- python /app/scripts/demo/seed_*.py
```
### 4. Clone Endpoint Enhancement Pattern
```python
# Add session_created_at parameter
# Parse session time
session_time = datetime.fromisoformat(session_created_at)
# Adjust all dates
adjusted_date = adjust_date_for_demo(
original_date, session_time, BASE_REFERENCE_DATE
)
# Generate alerts
alerts_count = await generate_<entity>_alerts(db, tenant_id, session_time)
```
---
## <<3C> Success Metrics (Achieved)
### Completeness 
-  **90%** of planned features implemented (testing remains)
-  **8 of 9** phases complete (testing pending)
-  **All critical paths** done
-  **All major entities** seeded
### Data Quality 
-  **100% Spanish** language coverage
-  **100% date adjustment** implementation
-  **Realistic distributions** across all entities
-  **Proper enum mappings** everywhere
-  **Comprehensive logging** throughout
### Architecture 
-  **Consistent K8s Job pattern** across all seeds
-  **JSON-based configuration** throughout
-  **Idempotent operations** everywhere
-  **Proper Helm hook ordering** (weights 5-40)
-  **Resource limits** defined for all jobs
### Performance (Projected) <20>
- <20> **Clone time**: < 60 seconds (to be tested)
- <EFBFBD> **Alert generation**: 40-60 per session (to be validated)
- <EFBFBD> **Seeds parallel execution**: Optimized via Helm weights
---
## =<3D> Remaining Work (2-4 hours)
### 1. Testing & Validation (2-3 hours) - CRITICAL
- [ ] End-to-end demo session creation test
- [ ] Verify all Kubernetes jobs run successfully
- [ ] Validate data integrity across services
- [ ] Confirm 40-60 alerts generated per session
- [ ] Performance testing (< 60 second clone target)
- [ ] Spanish language verification
- [ ] Date adjustment verification across all entities
- [ ] Check for duplicate/missing data
### 2. Documentation Final Touches (1 hour)
- [ ] Update main README with deployment instructions
- [ ] Create troubleshooting guide
- [ ] Document demo credentials clearly
- [ ] Add architecture diagrams (optional)
- [ ] Create quick reference card for sales/demo team
### 3. Optional Enhancements (If Time Permits)
- [ ] Add more product variety
- [ ] Enhance weather integration in forecasts
- [ ] Add holiday calendar for forecasting
- [ ] Create demo data export/import scripts
- [ ] Add data visualization examples
---
## <<3C> Key Learnings & Best Practices
### 1. Date Handling
- **Always use** `adjust_date_for_demo()` for all temporal data
- **BASE_REFERENCE_DATE** (2025-01-15) as anchor point
- **Offsets in days** for easy configuration
### 2. Idempotency
- **Always check** for existing data before seeding
- **Skip gracefully** if data exists
- **Log clearly** when skipping vs creating
### 3. Configuration
- **JSON files** for all configurable data
- **Easy for non-developers** to modify
- **Separate structure** from data
### 4. Kubernetes Jobs
- **Helm hooks** for automatic execution
- **Proper weights** for ordering (5, 10, 15, 20, 22, 25, 30, 35, 40)
- **Init containers** for dependency waiting
- **Resource limits** prevent resource exhaustion
### 5. Alert Generation
- **Generate after** data is committed
- **Spanish messages** always
- **Contextual information** in alerts
- **Severity levels** appropriate to situation
---
## <<3C> Conclusion
The Bakery IA demo seed system is **functionally complete** and ready for testing. The implementation provides:
 **Comprehensive Coverage**: All major business entities seeded
 **Realistic Data**: ~2,366 records with proper distributions
 **Spanish Language**: 100% coverage across all entities
 **Temporal Intelligence**: 74 days of time-adjusted data
 **Production Ready**: Kubernetes Job architecture with Helm
 **Maintainable**: JSON-based configuration, clear patterns
 **Alert Rich**: 40-60 contextual Spanish alerts per session
### Next Steps:
1. **Execute end-to-end testing** (2-3 hours)
2. **Finalize documentation** (1 hour)
3. **Deploy to staging environment**
4. **Train sales/demo team**
5. **Go live with prospect demos**
---
**Status**:  **READY FOR TESTING**
**Confidence Level**: **HIGH**
**Risk Level**: **LOW**
**Estimated Time to Production**: **1-2 days** (after testing)
<<3C> **Excellent work on completing this comprehensive implementation!** <<3C>