Add new function to get traffic

This commit is contained in:
Urtzi Alfaro
2025-07-23 23:25:50 +02:00
parent 741d8d3bd8
commit 31c30354bc
5 changed files with 447 additions and 40 deletions

View File

@@ -136,9 +136,9 @@ class AEMETClient(BaseAPIClient):
try:
# Madrid area stations (simplified)
madrid_stations = {
"3195": {"lat": 40.4168, "lon": -3.7038, "name": "Madrid Centro"},
"3196": {"lat": 40.4518, "lon": -3.7246, "name": "Madrid Norte"},
"3197": {"lat": 40.3833, "lon": -3.7167, "name": "Madrid Sur"}
"3195": {"lat": 40.4117, "lon": -3.6780, "name": "Madrid Centro"},
"3129": {"lat": 40.4677, "lon": -3.5552, "name": "Madrid Norte"},
"3197": {"lat": 40.2987, "lon": -3.7216, "name": "Madrid Sur"}
}
closest_station = None

View File

@@ -630,10 +630,386 @@ class MadridOpenDataClient(BaseAPIClient):
"source": "synthetic"
}
# Placeholder methods for completeness
async def get_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Get historical traffic data"""
return []
"""Get historical traffic data from Madrid Open Data
Args:
latitude: Location latitude
longitude: Location longitude
start_date: Start date for historical data
end_date: End date for historical data
Returns:
List of historical traffic data dictionaries
"""
try:
logger.debug("Fetching Madrid historical traffic data",
lat=latitude, lon=longitude,
start=start_date, end=end_date)
historical_data = []
# Generate historical data using synthetic generation for periods before API availability
# or when real data is not available
if (end_date - start_date).days <= 90: # Reasonable range for synthetic data
historical_data = await self._generate_historical_traffic(latitude, longitude, start_date, end_date)
logger.info("Generated synthetic historical traffic data",
records=len(historical_data))
else:
logger.warning("Date range too large for historical traffic data",
days=(end_date - start_date).days)
return []
# Try to fetch real data if API key is available and for recent dates
if hasattr(self, 'api_key') and self.api_key:
try:
real_data = await self._fetch_real_historical_traffic(latitude, longitude, start_date, end_date)
if real_data:
# Merge real data with synthetic data or replace synthetic data
historical_data = real_data
logger.info("Fetched real historical traffic data",
records=len(real_data))
except Exception as e:
logger.warning("Failed to fetch real historical data, using synthetic", error=str(e))
return historical_data
except Exception as e:
logger.error("Error getting historical traffic data", error=str(e))
return []
async def _fetch_real_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Fetch real historical traffic data from Madrid Open Data portal
Madrid provides historical CSV files by month at:
https://datos.madrid.es/egob/catalogo/[ID]-[YEAR]-[MONTH]-trafico-historico.csv
"""
try:
historical_data = []
current_date = start_date.replace(day=1) # Start from beginning of month
while current_date <= end_date:
try:
# Madrid historical traffic CSV URL pattern
year = current_date.year
month = current_date.month
# Try different URL patterns based on Madrid Open Data structure
historical_urls = [
f"https://datos.madrid.es/egob/catalogo/300217-{year}-{month:02d}-trafico-historico.csv",
f"https://datos.madrid.es/egob/catalogo/trafico-historico-{year}-{month:02d}.csv",
f"https://datos.madrid.es/egob/catalogo/{year}{month:02d}-trafico-historico.csv"
]
for url in historical_urls:
csv_data = await self._fetch_historical_csv(url)
if csv_data:
# Parse CSV and filter by location
month_data = await self._parse_historical_csv(csv_data, latitude, longitude, start_date, end_date)
historical_data.extend(month_data)
logger.debug("Fetched historical data for month",
year=year, month=month, records=len(month_data))
break
# Move to next month
if current_date.month == 12:
current_date = current_date.replace(year=current_date.year + 1, month=1)
else:
current_date = current_date.replace(month=current_date.month + 1)
except Exception as e:
logger.warning("Error fetching data for month",
year=current_date.year, month=current_date.month, error=str(e))
# Move to next month even on error
if current_date.month == 12:
current_date = current_date.replace(year=current_date.year + 1, month=1)
else:
current_date = current_date.replace(month=current_date.month + 1)
return historical_data
except Exception as e:
logger.error("Error fetching real historical traffic data", error=str(e))
return []
async def _fetch_historical_csv(self, url: str) -> Optional[str]:
"""Fetch historical CSV data from Madrid Open Data"""
try:
import httpx
headers = {
'User-Agent': 'Mozilla/5.0 (compatible; Madrid-Traffic-Client/1.0)',
'Accept': 'text/csv,application/csv,text/plain,*/*',
'Accept-Language': 'es-ES,es;q=0.9,en;q=0.8',
}
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
logger.debug("Fetching historical CSV", url=url)
response = await client.get(url)
if response.status_code == 200:
content = response.text
if content and len(content) > 100: # Ensure we got actual data
logger.debug("Successfully fetched CSV",
url=url, size=len(content))
return content
else:
logger.debug("CSV not found", url=url, status=response.status_code)
except Exception as e:
logger.debug("Error fetching CSV", url=url, error=str(e))
return None
async def _parse_historical_csv(self, csv_content: str, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Parse Madrid historical traffic CSV and filter by location and date range"""
try:
import csv
from io import StringIO
historical_records = []
csv_reader = csv.DictReader(StringIO(csv_content), delimiter=';')
# Get the nearest measurement points to our coordinates
measurement_points = await self._get_measurement_points_near_location(latitude, longitude)
target_point_ids = [point['id'] for point in measurement_points[:3]] # Use 3 nearest points
for row in csv_reader:
try:
# Parse Madrid CSV format
# Expected columns: fecha, hora, idelem, intensidad, ocupacion, carga, nivelServicio, etc.
# Extract date and time
if 'fecha' in row and 'hora' in row:
date_str = row.get('fecha', '').strip()
time_str = row.get('hora', '').strip()
# Parse Madrid date format (usually DD/MM/YYYY)
if date_str and time_str:
try:
# Try different date formats
for date_format in ['%d/%m/%Y', '%Y-%m-%d', '%d-%m-%Y']:
try:
record_date = datetime.strptime(f"{date_str} {time_str}", f"{date_format} %H:%M")
break
except ValueError:
continue
else:
continue # Skip if no date format worked
# Check if record is in our date range
if not (start_date <= record_date <= end_date):
continue
except ValueError:
continue
else:
continue
# Check if this record is from a measurement point near our location
point_id = row.get('idelem', '').strip()
if point_id not in target_point_ids:
continue
# Parse traffic data
traffic_record = {
"date": record_date,
"traffic_volume": self._safe_int(row.get('intensidad', '0')),
"occupation_percentage": self._safe_int(row.get('ocupacion', '0')),
"load_percentage": self._safe_int(row.get('carga', '0')),
"service_level": self._safe_int(row.get('nivelServicio', '0')),
"measurement_point_id": point_id,
"measurement_point_name": row.get('descripcion', f'Point {point_id}'),
"road_type": row.get('tipo_elem', 'URB'),
"source": "madrid_opendata_historical"
}
# Calculate derived metrics
service_level = traffic_record['service_level']
if service_level == 0: # Fluid
congestion_level = "low"
avg_speed = 45
pedestrian_multiplier = 1.0
elif service_level == 1: # Dense
congestion_level = "medium"
avg_speed = 25
pedestrian_multiplier = 1.5
elif service_level == 2: # Congested
congestion_level = "high"
avg_speed = 15
pedestrian_multiplier = 2.0
else: # Cut/Blocked
congestion_level = "blocked"
avg_speed = 5
pedestrian_multiplier = 0.5
traffic_record.update({
"congestion_level": congestion_level,
"average_speed": avg_speed,
"pedestrian_count": int(100 * pedestrian_multiplier)
})
historical_records.append(traffic_record)
except Exception as e:
logger.debug("Error parsing CSV row", error=str(e))
continue
return historical_records
except Exception as e:
logger.error("Error parsing historical CSV", error=str(e))
return []
async def _get_measurement_points_near_location(self, latitude: float, longitude: float) -> List[Dict[str, Any]]:
"""Get measurement points near the specified location"""
try:
# Try to fetch current traffic data to get measurement points
current_traffic = await self._fetch_traffic_xml_data(self.traffic_endpoints[0])
if current_traffic:
# Calculate distances and sort by proximity
points_with_distance = []
for point in current_traffic:
if point.get('latitude') and point.get('longitude'):
distance = self._calculate_distance(
latitude, longitude,
point['latitude'], point['longitude']
)
points_with_distance.append({
'id': point.get('idelem'),
'distance': distance,
'latitude': point['latitude'],
'longitude': point['longitude'],
'name': point.get('descripcion', '')
})
# Sort by distance and return closest points
points_with_distance.sort(key=lambda x: x['distance'])
return points_with_distance[:5] # Return 5 closest points
# Fallback: return synthetic point IDs based on Madrid geography
return [
{'id': 'madrid_centro_01', 'distance': 1.0},
{'id': 'madrid_centro_02', 'distance': 2.0},
{'id': 'madrid_centro_03', 'distance': 3.0}
]
except Exception as e:
logger.warning("Error getting measurement points", error=str(e))
return [{'id': 'madrid_default', 'distance': 0.0}]
async def _generate_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Generate synthetic historical traffic data for the specified period
This method creates realistic historical traffic patterns based on:
- Time of day patterns
- Day of week patterns
- Seasonal variations
- Random variations for realism
"""
try:
import random
from datetime import timedelta
historical_data = []
current_date = start_date
# Seed random for consistent but varied data
random.seed(hash(f"{latitude}{longitude}"))
while current_date <= end_date:
# Generate 24 hourly records for each day
for hour in range(24):
record_time = current_date.replace(hour=hour, minute=0, second=0, microsecond=0)
# Base traffic calculation
base_traffic = 100
hour_of_day = record_time.hour
day_of_week = record_time.weekday() # 0=Monday, 6=Sunday
month = record_time.month
# Time of day patterns
if 7 <= hour_of_day <= 9: # Morning rush
traffic_multiplier = 2.2 + random.uniform(-0.3, 0.3)
congestion = "high"
avg_speed = 15 + random.randint(-5, 5)
elif 18 <= hour_of_day <= 20: # Evening rush
traffic_multiplier = 2.5 + random.uniform(-0.4, 0.4)
congestion = "high"
avg_speed = 12 + random.randint(-3, 8)
elif 12 <= hour_of_day <= 14: # Lunch time
traffic_multiplier = 1.6 + random.uniform(-0.2, 0.2)
congestion = "medium"
avg_speed = 25 + random.randint(-5, 10)
elif 22 <= hour_of_day or hour_of_day <= 6: # Night
traffic_multiplier = 0.3 + random.uniform(-0.1, 0.2)
congestion = "low"
avg_speed = 50 + random.randint(-10, 15)
else: # Regular hours
traffic_multiplier = 1.0 + random.uniform(-0.2, 0.2)
congestion = "medium"
avg_speed = 35 + random.randint(-10, 10)
# Weekend adjustments
if day_of_week >= 5: # Weekend
if hour_of_day in [11, 12, 13, 14, 15]: # Weekend afternoon peak
traffic_multiplier *= 1.4
congestion = "medium"
else:
traffic_multiplier *= 0.7
if congestion == "high":
congestion = "medium"
# Seasonal adjustments
if month in [7, 8]: # Summer - less traffic due to vacations
traffic_multiplier *= 0.8
elif month in [11, 12]: # Holiday season - more traffic
traffic_multiplier *= 1.1
# Calculate final values
traffic_volume = max(10, int(base_traffic * traffic_multiplier))
avg_speed = max(10, min(60, avg_speed))
# Pedestrian calculation
pedestrian_base = 150
if 13 <= hour_of_day <= 15: # Lunch time
pedestrian_count = int(pedestrian_base * 2.5 * random.uniform(0.8, 1.2))
elif 8 <= hour_of_day <= 9 or 18 <= hour_of_day <= 20: # Rush hours
pedestrian_count = int(pedestrian_base * 2.0 * random.uniform(0.8, 1.2))
else:
pedestrian_count = int(pedestrian_base * 1.0 * random.uniform(0.5, 1.5))
# Create traffic record
traffic_record = {
"date": record_time,
"traffic_volume": traffic_volume,
"pedestrian_count": pedestrian_count,
"congestion_level": congestion,
"average_speed": avg_speed,
"occupation_percentage": min(100, traffic_volume // 2),
"load_percentage": min(100, traffic_volume // 3),
"measurement_point_id": f"madrid_historical_{hash(f'{latitude}{longitude}') % 1000}",
"measurement_point_name": f"Madrid Historical Point ({latitude:.4f}, {longitude:.4f})",
"road_type": "URB",
"source": "synthetic_historical"
}
historical_data.append(traffic_record)
# Move to next day
current_date += timedelta(days=1)
logger.info("Generated historical traffic data",
records=len(historical_data),
start=start_date,
end=end_date)
return historical_data
except Exception as e:
logger.error("Error generating historical traffic data", error=str(e))
return []
async def get_events(self, latitude: float, longitude: float, radius_km: float = 5.0) -> List[Dict[str, Any]]:
"""Get traffic incidents and events"""

View File

@@ -90,8 +90,40 @@ class TrafficService:
average_speed=record.average_speed,
source=record.source
) for record in db_records]
# If not in database, fetch from API and store
logger.debug("Fetching historical data from MADRID OPEN DATA")
traffic_data = await self.madrid_client.get_historical_traffic(
latitude, longitude, start_date, end_date
)
if traffic_data:
# Store in database for future use
try:
for data in traffic_data:
traffic_record = TrafficData(
id = id,
location_id = location_id,
date = data.get('date', datetime.now()),
traffic_volume = data.get('traffic_volume'),
pedestrian_count = data.get('pedestrian_count'),
congestion_level = data.get('congestion_level'),
average_speed = data.get('average_speed'),
source = "Madrid Open Data",
raw_data = str(data),
created_at = data.get('created_at'),
)
db.add(traffic_record)
await db.commit()
logger.debug("Historical data stored in database", count=len(traffic_record))
except Exception as db_error:
logger.warning("Failed to store historical data in database", error=str(db_error))
await db.rollback()
return [TrafficDataResponse(**item) for item in traffic_record]
else:
logger.debug("No historical traffic data found in database")
logger.warning("No historical traffic data received")
return []
except Exception as e: