Improve kubernetes for prod
This commit is contained in:
648
services/training/README.md
Normal file
648
services/training/README.md
Normal file
@@ -0,0 +1,648 @@
|
||||
# Training Service (ML Model Management)
|
||||
|
||||
## Overview
|
||||
|
||||
The **Training Service** is the machine learning pipeline engine of Bakery-IA, responsible for training, versioning, and managing Prophet forecasting models. It orchestrates the entire ML workflow from data collection to model deployment, providing real-time progress updates via WebSocket and ensuring bakeries always have the most accurate prediction models. This service enables continuous learning and model improvement without requiring data science expertise.
|
||||
|
||||
## Key Features
|
||||
|
||||
### Automated ML Pipeline
|
||||
- **One-Click Model Training** - Train models for all products with a single API call
|
||||
- **Background Job Processing** - Asynchronous training with job queue management
|
||||
- **Multi-Product Training** - Process multiple products in parallel
|
||||
- **Progress Tracking** - Real-time WebSocket updates on training status
|
||||
- **Automatic Model Versioning** - Track all model versions with performance metrics
|
||||
- **Model Artifact Storage** - Persist trained models for fast prediction loading
|
||||
|
||||
### Training Job Management
|
||||
- **Job Queue** - FIFO queue for training requests
|
||||
- **Job Status Tracking** - Monitor pending, running, completed, and failed jobs
|
||||
- **Concurrent Job Control** - Limit parallel training jobs to prevent resource exhaustion
|
||||
- **Timeout Handling** - Automatic job termination after maximum duration
|
||||
- **Error Recovery** - Detailed error messages and retry capabilities
|
||||
- **Job History** - Complete audit trail of all training executions
|
||||
|
||||
### Model Performance Tracking
|
||||
- **Accuracy Metrics** - MAE, RMSE, R², MAPE for each trained model
|
||||
- **Historical Comparison** - Compare current vs. previous model performance
|
||||
- **Per-Product Analytics** - Track which products have the best forecast accuracy
|
||||
- **Training Duration Tracking** - Monitor training performance and optimization
|
||||
- **Model Selection** - Automatically deploy best-performing models
|
||||
|
||||
### Real-Time Communication
|
||||
- **WebSocket Live Updates** - Real-time progress percentage and status messages
|
||||
- **Training Logs** - Detailed step-by-step execution logs
|
||||
- **Completion Notifications** - RabbitMQ events for training completion
|
||||
- **Error Alerts** - Immediate notification of training failures
|
||||
|
||||
### Feature Engineering
|
||||
- **Historical Data Aggregation** - Collect sales data for model training
|
||||
- **External Data Integration** - Fetch weather, traffic, holiday data
|
||||
- **Feature Extraction** - Generate 20+ temporal and contextual features
|
||||
- **Data Validation** - Ensure minimum data requirements before training
|
||||
- **Outlier Detection** - Filter anomalous data points
|
||||
|
||||
## Technical Capabilities
|
||||
|
||||
### ML Training Pipeline
|
||||
|
||||
```python
|
||||
# Training workflow
|
||||
async def train_model_pipeline(tenant_id: str, product_id: str):
|
||||
"""Complete ML training pipeline"""
|
||||
|
||||
# Step 1: Data Collection
|
||||
sales_data = await fetch_historical_sales(tenant_id, product_id)
|
||||
if len(sales_data) < MIN_TRAINING_DAYS:
|
||||
raise InsufficientDataError(f"Need {MIN_TRAINING_DAYS}+ days of data")
|
||||
|
||||
# Step 2: Feature Engineering
|
||||
features = engineer_features(sales_data)
|
||||
weather_data = await fetch_weather_data(tenant_id)
|
||||
traffic_data = await fetch_traffic_data(tenant_id)
|
||||
holiday_data = await fetch_holiday_calendar()
|
||||
|
||||
# Step 3: Prophet Model Training
|
||||
model = Prophet(
|
||||
seasonality_mode='additive',
|
||||
daily_seasonality=True,
|
||||
weekly_seasonality=True,
|
||||
yearly_seasonality=True,
|
||||
)
|
||||
model.add_country_holidays(country_name='ES')
|
||||
model.fit(features)
|
||||
|
||||
# Step 4: Model Validation
|
||||
metrics = calculate_performance_metrics(model, sales_data)
|
||||
|
||||
# Step 5: Model Storage
|
||||
model_path = save_model_artifact(model, tenant_id, product_id)
|
||||
|
||||
# Step 6: Model Registration
|
||||
await register_model_in_database(model_path, metrics)
|
||||
|
||||
# Step 7: Notification
|
||||
await publish_training_complete_event(tenant_id, product_id, metrics)
|
||||
|
||||
return model, metrics
|
||||
```
|
||||
|
||||
### WebSocket Progress Updates
|
||||
|
||||
```python
|
||||
# Real-time progress broadcasting
|
||||
async def broadcast_training_progress(job_id: str, progress: dict):
|
||||
"""Send progress update to connected clients"""
|
||||
|
||||
message = {
|
||||
"type": "training_progress",
|
||||
"job_id": job_id,
|
||||
"progress": {
|
||||
"percentage": progress["percentage"], # 0-100
|
||||
"current_step": progress["step"], # Step description
|
||||
"products_completed": progress["completed"],
|
||||
"products_total": progress["total"],
|
||||
"estimated_time_remaining": progress["eta"], # Seconds
|
||||
"started_at": progress["start_time"]
|
||||
},
|
||||
"timestamp": datetime.utcnow().isoformat()
|
||||
}
|
||||
|
||||
await websocket_manager.broadcast(job_id, message)
|
||||
```
|
||||
|
||||
### Model Artifact Management
|
||||
|
||||
```python
|
||||
# Model storage and retrieval
|
||||
import joblib
|
||||
from pathlib import Path
|
||||
|
||||
# Save trained model
|
||||
def save_model_artifact(model: Prophet, tenant_id: str, product_id: str) -> str:
|
||||
"""Serialize and store model"""
|
||||
model_dir = Path(f"/models/{tenant_id}/{product_id}")
|
||||
model_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
version = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
||||
model_path = model_dir / f"model_v{version}.pkl"
|
||||
|
||||
joblib.dump(model, model_path)
|
||||
return str(model_path)
|
||||
|
||||
# Load trained model
|
||||
def load_model_artifact(model_path: str) -> Prophet:
|
||||
"""Load serialized model"""
|
||||
return joblib.load(model_path)
|
||||
```
|
||||
|
||||
### Performance Metrics Calculation
|
||||
|
||||
```python
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
|
||||
import numpy as np
|
||||
|
||||
def calculate_performance_metrics(model: Prophet, actual_data: pd.DataFrame) -> dict:
|
||||
"""Calculate comprehensive model performance metrics"""
|
||||
|
||||
# Make predictions on validation set
|
||||
predictions = model.predict(actual_data)
|
||||
|
||||
# Calculate metrics
|
||||
mae = mean_absolute_error(actual_data['y'], predictions['yhat'])
|
||||
rmse = np.sqrt(mean_squared_error(actual_data['y'], predictions['yhat']))
|
||||
r2 = r2_score(actual_data['y'], predictions['yhat'])
|
||||
mape = np.mean(np.abs((actual_data['y'] - predictions['yhat']) / actual_data['y'])) * 100
|
||||
|
||||
return {
|
||||
"mae": float(mae), # Mean Absolute Error
|
||||
"rmse": float(rmse), # Root Mean Square Error
|
||||
"r2_score": float(r2), # R-squared
|
||||
"mape": float(mape), # Mean Absolute Percentage Error
|
||||
"accuracy": float(100 - mape) if mape < 100 else 0.0
|
||||
}
|
||||
```
|
||||
|
||||
## Business Value
|
||||
|
||||
### For Bakery Owners
|
||||
- **Continuous Improvement** - Models automatically improve with more data
|
||||
- **No ML Expertise Required** - One-click training, no data science skills needed
|
||||
- **Always Up-to-Date** - Weekly automatic retraining keeps models accurate
|
||||
- **Transparent Performance** - Clear accuracy metrics show forecast reliability
|
||||
- **Cost Savings** - Automated ML pipeline eliminates need for data scientists
|
||||
|
||||
### For Operations Managers
|
||||
- **Model Version Control** - Track and compare model versions over time
|
||||
- **Performance Monitoring** - Identify products with poor forecast accuracy
|
||||
- **Training Scheduling** - Schedule retraining during low-traffic hours
|
||||
- **Resource Management** - Control concurrent training jobs to prevent overload
|
||||
|
||||
### For Platform Operations
|
||||
- **Scalable ML Pipeline** - Train models for thousands of products
|
||||
- **Background Processing** - Non-blocking training jobs
|
||||
- **Error Handling** - Robust error recovery and retry mechanisms
|
||||
- **Cost Optimization** - Efficient model storage and caching
|
||||
|
||||
## Technology Stack
|
||||
|
||||
- **Framework**: FastAPI (Python 3.11+) - Async web framework with WebSocket support
|
||||
- **Database**: PostgreSQL 17 - Training logs, model metadata, job queue
|
||||
- **ML Library**: Prophet (fbprophet) - Time series forecasting
|
||||
- **Model Storage**: Joblib - Model serialization
|
||||
- **File System**: Persistent volumes - Model artifact storage
|
||||
- **WebSocket**: FastAPI WebSocket - Real-time progress updates
|
||||
- **Messaging**: RabbitMQ 4.1 - Training completion events
|
||||
- **ORM**: SQLAlchemy 2.0 (async) - Database abstraction
|
||||
- **Data Processing**: Pandas, NumPy - Data manipulation
|
||||
- **Logging**: Structlog - Structured JSON logging
|
||||
- **Metrics**: Prometheus Client - Custom metrics
|
||||
|
||||
## API Endpoints (Key Routes)
|
||||
|
||||
### Training Management
|
||||
- `POST /api/v1/training/start` - Start training job for tenant
|
||||
- `POST /api/v1/training/start/{product_id}` - Train specific product
|
||||
- `POST /api/v1/training/stop/{job_id}` - Stop running training job
|
||||
- `GET /api/v1/training/status/{job_id}` - Get job status and progress
|
||||
- `GET /api/v1/training/history` - Get training job history
|
||||
- `DELETE /api/v1/training/jobs/{job_id}` - Delete training job record
|
||||
|
||||
### Model Management
|
||||
- `GET /api/v1/training/models` - List all trained models
|
||||
- `GET /api/v1/training/models/{model_id}` - Get specific model details
|
||||
- `GET /api/v1/training/models/{model_id}/metrics` - Get model performance metrics
|
||||
- `GET /api/v1/training/models/latest/{product_id}` - Get latest model for product
|
||||
- `POST /api/v1/training/models/{model_id}/deploy` - Deploy specific model version
|
||||
- `DELETE /api/v1/training/models/{model_id}` - Delete model artifact
|
||||
|
||||
### WebSocket
|
||||
- `WS /api/v1/training/ws/{job_id}` - Connect to training progress stream
|
||||
|
||||
### Analytics
|
||||
- `GET /api/v1/training/analytics/performance` - Overall training performance
|
||||
- `GET /api/v1/training/analytics/accuracy` - Model accuracy distribution
|
||||
- `GET /api/v1/training/analytics/duration` - Training duration statistics
|
||||
|
||||
## Database Schema
|
||||
|
||||
### Main Tables
|
||||
|
||||
**training_job_queue**
|
||||
```sql
|
||||
CREATE TABLE training_job_queue (
|
||||
id UUID PRIMARY KEY,
|
||||
tenant_id UUID NOT NULL,
|
||||
job_name VARCHAR(255),
|
||||
products_to_train TEXT[], -- Array of product IDs
|
||||
status VARCHAR(50) NOT NULL, -- pending, running, completed, failed
|
||||
priority INTEGER DEFAULT 0,
|
||||
progress_percentage INTEGER DEFAULT 0,
|
||||
current_step VARCHAR(255),
|
||||
products_completed INTEGER DEFAULT 0,
|
||||
products_total INTEGER,
|
||||
started_at TIMESTAMP,
|
||||
completed_at TIMESTAMP,
|
||||
estimated_completion TIMESTAMP,
|
||||
error_message TEXT,
|
||||
retry_count INTEGER DEFAULT 0,
|
||||
created_by UUID,
|
||||
created_at TIMESTAMP DEFAULT NOW(),
|
||||
updated_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
**trained_models**
|
||||
```sql
|
||||
CREATE TABLE trained_models (
|
||||
id UUID PRIMARY KEY,
|
||||
tenant_id UUID NOT NULL,
|
||||
product_id UUID NOT NULL,
|
||||
model_version VARCHAR(50) NOT NULL,
|
||||
model_path VARCHAR(500) NOT NULL,
|
||||
training_job_id UUID REFERENCES training_job_queue(id),
|
||||
algorithm VARCHAR(50) DEFAULT 'prophet',
|
||||
hyperparameters JSONB,
|
||||
training_duration_seconds INTEGER,
|
||||
training_data_points INTEGER,
|
||||
is_deployed BOOLEAN DEFAULT FALSE,
|
||||
deployed_at TIMESTAMP,
|
||||
created_at TIMESTAMP DEFAULT NOW(),
|
||||
UNIQUE(tenant_id, product_id, model_version)
|
||||
);
|
||||
```
|
||||
|
||||
**model_performance_metrics**
|
||||
```sql
|
||||
CREATE TABLE model_performance_metrics (
|
||||
id UUID PRIMARY KEY,
|
||||
model_id UUID REFERENCES trained_models(id),
|
||||
tenant_id UUID NOT NULL,
|
||||
product_id UUID NOT NULL,
|
||||
mae DECIMAL(10, 4), -- Mean Absolute Error
|
||||
rmse DECIMAL(10, 4), -- Root Mean Square Error
|
||||
r2_score DECIMAL(10, 6), -- R-squared
|
||||
mape DECIMAL(10, 4), -- Mean Absolute Percentage Error
|
||||
accuracy_percentage DECIMAL(5, 2),
|
||||
validation_data_points INTEGER,
|
||||
created_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
**model_training_logs**
|
||||
```sql
|
||||
CREATE TABLE model_training_logs (
|
||||
id UUID PRIMARY KEY,
|
||||
training_job_id UUID REFERENCES training_job_queue(id),
|
||||
tenant_id UUID NOT NULL,
|
||||
product_id UUID,
|
||||
log_level VARCHAR(20), -- DEBUG, INFO, WARNING, ERROR
|
||||
message TEXT,
|
||||
step_name VARCHAR(100),
|
||||
execution_time_ms INTEGER,
|
||||
metadata JSONB,
|
||||
created_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
**model_artifacts** (Metadata only, actual files on disk)
|
||||
```sql
|
||||
CREATE TABLE model_artifacts (
|
||||
id UUID PRIMARY KEY,
|
||||
model_id UUID REFERENCES trained_models(id),
|
||||
artifact_type VARCHAR(50), -- model_file, feature_list, scaler, etc.
|
||||
file_path VARCHAR(500),
|
||||
file_size_bytes BIGINT,
|
||||
checksum VARCHAR(64), -- SHA-256 hash
|
||||
created_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
```
|
||||
|
||||
## Events & Messaging
|
||||
|
||||
### Published Events (RabbitMQ)
|
||||
|
||||
**Exchange**: `training`
|
||||
**Routing Key**: `training.completed`
|
||||
|
||||
**Training Completed Event**
|
||||
```json
|
||||
{
|
||||
"event_type": "training_completed",
|
||||
"tenant_id": "uuid",
|
||||
"job_id": "uuid",
|
||||
"job_name": "Weekly retraining - All products",
|
||||
"status": "completed",
|
||||
"results": {
|
||||
"successful_trainings": 25,
|
||||
"failed_trainings": 2,
|
||||
"total_products": 27,
|
||||
"models_created": [
|
||||
{
|
||||
"product_id": "uuid",
|
||||
"product_name": "Baguette",
|
||||
"model_version": "20251106_143022",
|
||||
"accuracy": 82.5,
|
||||
"mae": 12.3,
|
||||
"rmse": 18.7,
|
||||
"r2_score": 0.78
|
||||
}
|
||||
],
|
||||
"average_accuracy": 79.8,
|
||||
"training_duration_seconds": 342
|
||||
},
|
||||
"started_at": "2025-11-06T14:25:00Z",
|
||||
"completed_at": "2025-11-06T14:30:42Z",
|
||||
"timestamp": "2025-11-06T14:30:42Z"
|
||||
}
|
||||
```
|
||||
|
||||
**Training Failed Event**
|
||||
```json
|
||||
{
|
||||
"event_type": "training_failed",
|
||||
"tenant_id": "uuid",
|
||||
"job_id": "uuid",
|
||||
"product_id": "uuid",
|
||||
"product_name": "Croissant",
|
||||
"error_type": "InsufficientDataError",
|
||||
"error_message": "Product requires minimum 30 days of sales data. Currently: 15 days.",
|
||||
"recommended_action": "Collect more sales data before retraining",
|
||||
"severity": "medium",
|
||||
"timestamp": "2025-11-06T14:28:15Z"
|
||||
}
|
||||
```
|
||||
|
||||
### Consumed Events
|
||||
- **From Orchestrator**: Scheduled training triggers
|
||||
- **From Sales**: New sales data imported (triggers retraining)
|
||||
|
||||
## Custom Metrics (Prometheus)
|
||||
|
||||
```python
|
||||
# Training job metrics
|
||||
training_jobs_total = Counter(
|
||||
'training_jobs_total',
|
||||
'Total training jobs started',
|
||||
['tenant_id', 'status'] # completed, failed, cancelled
|
||||
)
|
||||
|
||||
training_duration_seconds = Histogram(
|
||||
'training_duration_seconds',
|
||||
'Training job duration',
|
||||
['tenant_id'],
|
||||
buckets=[10, 30, 60, 120, 300, 600, 1800, 3600] # seconds
|
||||
)
|
||||
|
||||
models_trained_total = Counter(
|
||||
'models_trained_total',
|
||||
'Total models successfully trained',
|
||||
['tenant_id', 'product_category']
|
||||
)
|
||||
|
||||
# Model performance metrics
|
||||
model_accuracy_distribution = Histogram(
|
||||
'model_accuracy_percentage',
|
||||
'Distribution of model accuracy scores',
|
||||
['tenant_id'],
|
||||
buckets=[50, 60, 70, 75, 80, 85, 90, 95, 100] # percentage
|
||||
)
|
||||
|
||||
model_mae_distribution = Histogram(
|
||||
'model_mae',
|
||||
'Distribution of Mean Absolute Error',
|
||||
['tenant_id'],
|
||||
buckets=[1, 5, 10, 20, 30, 50, 100] # units
|
||||
)
|
||||
|
||||
# WebSocket metrics
|
||||
websocket_connections_total = Gauge(
|
||||
'training_websocket_connections',
|
||||
'Active WebSocket connections',
|
||||
['tenant_id']
|
||||
)
|
||||
|
||||
websocket_messages_sent = Counter(
|
||||
'training_websocket_messages_total',
|
||||
'Total WebSocket messages sent',
|
||||
['tenant_id', 'message_type']
|
||||
)
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
**Service Configuration:**
|
||||
- `PORT` - Service port (default: 8004)
|
||||
- `DATABASE_URL` - PostgreSQL connection string
|
||||
- `RABBITMQ_URL` - RabbitMQ connection string
|
||||
- `MODEL_STORAGE_PATH` - Path for model artifacts (default: /models)
|
||||
|
||||
**Training Configuration:**
|
||||
- `MAX_CONCURRENT_JOBS` - Maximum parallel training jobs (default: 3)
|
||||
- `MAX_TRAINING_TIME_MINUTES` - Job timeout (default: 30)
|
||||
- `MIN_TRAINING_DATA_DAYS` - Minimum history required (default: 30)
|
||||
- `ENABLE_AUTO_DEPLOYMENT` - Auto-deploy after training (default: true)
|
||||
|
||||
**Prophet Configuration:**
|
||||
- `PROPHET_DAILY_SEASONALITY` - Enable daily patterns (default: true)
|
||||
- `PROPHET_WEEKLY_SEASONALITY` - Enable weekly patterns (default: true)
|
||||
- `PROPHET_YEARLY_SEASONALITY` - Enable yearly patterns (default: true)
|
||||
- `PROPHET_INTERVAL_WIDTH` - Confidence interval (default: 0.95)
|
||||
- `PROPHET_CHANGEPOINT_PRIOR_SCALE` - Trend flexibility (default: 0.05)
|
||||
|
||||
**WebSocket Configuration:**
|
||||
- `WEBSOCKET_HEARTBEAT_INTERVAL` - Ping interval seconds (default: 30)
|
||||
- `WEBSOCKET_MAX_CONNECTIONS` - Max connections per tenant (default: 10)
|
||||
- `WEBSOCKET_MESSAGE_QUEUE_SIZE` - Message buffer size (default: 100)
|
||||
|
||||
**Storage Configuration:**
|
||||
- `MODEL_RETENTION_DAYS` - Days to keep old models (default: 90)
|
||||
- `MAX_MODEL_VERSIONS_PER_PRODUCT` - Version limit (default: 10)
|
||||
- `ENABLE_MODEL_COMPRESSION` - Compress model files (default: true)
|
||||
|
||||
## Development Setup
|
||||
|
||||
### Prerequisites
|
||||
- Python 3.11+
|
||||
- PostgreSQL 17
|
||||
- RabbitMQ 4.1
|
||||
- Persistent storage for model artifacts
|
||||
|
||||
### Local Development
|
||||
```bash
|
||||
# Create virtual environment
|
||||
cd services/training
|
||||
python -m venv venv
|
||||
source venv/bin/activate
|
||||
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Set environment variables
|
||||
export DATABASE_URL=postgresql://user:pass@localhost:5432/training
|
||||
export RABBITMQ_URL=amqp://guest:guest@localhost:5672/
|
||||
export MODEL_STORAGE_PATH=/tmp/models
|
||||
|
||||
# Create model storage directory
|
||||
mkdir -p /tmp/models
|
||||
|
||||
# Run database migrations
|
||||
alembic upgrade head
|
||||
|
||||
# Run the service
|
||||
python main.py
|
||||
```
|
||||
|
||||
### Testing
|
||||
```bash
|
||||
# Unit tests
|
||||
pytest tests/unit/ -v
|
||||
|
||||
# Integration tests (requires services)
|
||||
pytest tests/integration/ -v
|
||||
|
||||
# WebSocket tests
|
||||
pytest tests/websocket/ -v
|
||||
|
||||
# Test with coverage
|
||||
pytest --cov=app tests/ --cov-report=html
|
||||
```
|
||||
|
||||
### WebSocket Testing
|
||||
```python
|
||||
# Test WebSocket connection
|
||||
import asyncio
|
||||
import websockets
|
||||
import json
|
||||
|
||||
async def test_training_progress():
|
||||
uri = "ws://localhost:8004/api/v1/training/ws/job-id-here"
|
||||
async with websockets.connect(uri) as websocket:
|
||||
while True:
|
||||
message = await websocket.recv()
|
||||
data = json.loads(message)
|
||||
print(f"Progress: {data['progress']['percentage']}%")
|
||||
print(f"Step: {data['progress']['current_step']}")
|
||||
|
||||
if data['type'] == 'training_completed':
|
||||
print("Training finished!")
|
||||
break
|
||||
|
||||
asyncio.run(test_training_progress())
|
||||
```
|
||||
|
||||
## Integration Points
|
||||
|
||||
### Dependencies (Services Called)
|
||||
- **Sales Service** - Fetch historical sales data for training
|
||||
- **External Service** - Fetch weather, traffic, holiday data
|
||||
- **PostgreSQL** - Store job queue, models, metrics, logs
|
||||
- **RabbitMQ** - Publish training completion events
|
||||
- **File System** - Store model artifacts
|
||||
|
||||
### Dependents (Services That Call This)
|
||||
- **Forecasting Service** - Load trained models for predictions
|
||||
- **Orchestrator Service** - Trigger scheduled training jobs
|
||||
- **Frontend Dashboard** - Display training progress and model metrics
|
||||
- **AI Insights Service** - Analyze model performance patterns
|
||||
|
||||
## Security Measures
|
||||
|
||||
### Data Protection
|
||||
- **Tenant Isolation** - All training jobs scoped to tenant_id
|
||||
- **Model Access Control** - Only tenant can access their models
|
||||
- **Input Validation** - Validate all training parameters
|
||||
- **Rate Limiting** - Prevent training job spam
|
||||
|
||||
### Model Security
|
||||
- **Model Checksums** - SHA-256 hash verification for artifacts
|
||||
- **Version Control** - Track all model versions with audit trail
|
||||
- **Access Logging** - Log all model access and deployment
|
||||
- **Secure Storage** - Model files stored with restricted permissions
|
||||
|
||||
### WebSocket Security
|
||||
- **JWT Authentication** - Authenticate WebSocket connections
|
||||
- **Connection Limits** - Max connections per tenant
|
||||
- **Message Validation** - Validate all WebSocket messages
|
||||
- **Heartbeat Monitoring** - Detect and close stale connections
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Training Performance
|
||||
1. **Parallel Processing** - Train multiple products concurrently
|
||||
2. **Data Caching** - Cache fetched external data across products
|
||||
3. **Incremental Training** - Only retrain changed products
|
||||
4. **Resource Limits** - CPU/memory limits per training job
|
||||
5. **Priority Queue** - Prioritize important products first
|
||||
|
||||
### Storage Optimization
|
||||
1. **Model Compression** - Compress model artifacts (gzip)
|
||||
2. **Old Model Cleanup** - Automatic deletion after retention period
|
||||
3. **Version Limits** - Keep only N most recent versions
|
||||
4. **Deduplication** - Avoid storing identical models
|
||||
|
||||
### WebSocket Optimization
|
||||
1. **Message Batching** - Batch progress updates (every 2 seconds)
|
||||
2. **Connection Pooling** - Reuse WebSocket connections
|
||||
3. **Compression** - Enable WebSocket message compression
|
||||
4. **Heartbeat** - Keep connections alive efficiently
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Issue**: Training jobs stuck in "pending" status
|
||||
- **Cause**: Max concurrent jobs reached or worker process crashed
|
||||
- **Solution**: Check `MAX_CONCURRENT_JOBS` setting, restart service
|
||||
|
||||
**Issue**: WebSocket connection drops during training
|
||||
- **Cause**: Network timeout or client disconnection
|
||||
- **Solution**: Implement auto-reconnect logic in client
|
||||
|
||||
**Issue**: "Insufficient data" errors for many products
|
||||
- **Cause**: Products need 30+ days of sales history
|
||||
- **Solution**: Import more historical sales data or reduce `MIN_TRAINING_DATA_DAYS`
|
||||
|
||||
**Issue**: Low model accuracy (<70%)
|
||||
- **Cause**: Insufficient data, outliers, or changing business patterns
|
||||
- **Solution**: Clean outliers, add more features, or manually adjust Prophet params
|
||||
|
||||
### Debug Mode
|
||||
```bash
|
||||
# Enable detailed logging
|
||||
export LOG_LEVEL=DEBUG
|
||||
export PROPHET_VERBOSE=1
|
||||
|
||||
# Enable training profiling
|
||||
export ENABLE_PROFILING=1
|
||||
|
||||
# Disable concurrent jobs for debugging
|
||||
export MAX_CONCURRENT_JOBS=1
|
||||
```
|
||||
|
||||
## Competitive Advantages
|
||||
|
||||
1. **One-Click ML** - No data science expertise required
|
||||
2. **Real-Time Visibility** - WebSocket progress updates unique in bakery software
|
||||
3. **Continuous Learning** - Automatic weekly retraining
|
||||
4. **Version Control** - Track and compare all model versions
|
||||
5. **Production-Ready** - Robust error handling and retry mechanisms
|
||||
6. **Scalable** - Train models for thousands of products
|
||||
7. **Spanish Market** - Optimized for Spanish bakery patterns and holidays
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
- **Hyperparameter Tuning** - Automatic optimization of Prophet parameters
|
||||
- **A/B Testing** - Deploy multiple models and compare performance
|
||||
- **Distributed Training** - Scale across multiple machines
|
||||
- **GPU Acceleration** - Use GPUs for deep learning models
|
||||
- **AutoML** - Automatic algorithm selection (Prophet vs LSTM vs ARIMA)
|
||||
- **Model Explainability** - SHAP values to explain predictions
|
||||
- **Custom Algorithms** - Support for user-provided ML models
|
||||
- **Transfer Learning** - Use pre-trained models from similar bakeries
|
||||
|
||||
---
|
||||
|
||||
**For VUE Madrid Business Plan**: The Training Service demonstrates advanced ML engineering capabilities with automated pipeline management and real-time monitoring. The ability to continuously improve forecast accuracy without manual intervention represents significant operational efficiency and competitive advantage. This self-learning system is a key differentiator in the bakery software market and showcases technical innovation suitable for EU technology grants and investor presentations.
|
||||
Reference in New Issue
Block a user