Add user delete process

This commit is contained in:
Urtzi Alfaro
2025-10-31 11:54:19 +01:00
parent 63f5c6d512
commit 269d3b5032
74 changed files with 16783 additions and 213 deletions

View File

@@ -23,7 +23,7 @@ from shared.monitoring.metrics import get_metrics_collector
from app.core.config import settings
from app.models import AuditLog
from shared.routing import RouteBuilder
from shared.auth.access_control import require_user_role
from shared.auth.access_control import require_user_role, service_only_access
from shared.security import create_audit_logger, create_rate_limiter, AuditSeverity, AuditAction
from shared.subscription.plans import get_forecast_quota, get_forecast_horizon_limit
from shared.redis_utils import get_redis_client
@@ -482,3 +482,120 @@ async def clear_prediction_cache(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to clear prediction cache"
)
# ============================================================================
# Tenant Data Deletion Operations (Internal Service Only)
# ============================================================================
@router.delete(
route_builder.build_base_route("tenant/{tenant_id}", include_tenant_prefix=False),
response_model=dict
)
@service_only_access
async def delete_tenant_data(
tenant_id: str = Path(..., description="Tenant ID to delete data for"),
current_user: dict = Depends(get_current_user_dep)
):
"""
Delete all forecasting data for a tenant (Internal service only)
This endpoint is called by the orchestrator during tenant deletion.
It permanently deletes all forecasting-related data including:
- Forecasts (all time periods)
- Prediction batches
- Model performance metrics
- Prediction cache
- Audit logs
**WARNING**: This operation is irreversible!
Returns:
Deletion summary with counts of deleted records
"""
from app.services.tenant_deletion_service import ForecastingTenantDeletionService
try:
logger.info("forecasting.tenant_deletion.api_called", tenant_id=tenant_id)
db_manager = create_database_manager(settings.DATABASE_URL, "forecasting")
async with db_manager.get_session() as session:
deletion_service = ForecastingTenantDeletionService(session)
result = await deletion_service.safe_delete_tenant_data(tenant_id)
if not result.success:
raise HTTPException(
status_code=500,
detail=f"Tenant data deletion failed: {', '.join(result.errors)}"
)
return {
"message": "Tenant data deletion completed successfully",
"summary": result.to_dict()
}
except HTTPException:
raise
except Exception as e:
logger.error("forecasting.tenant_deletion.api_error",
tenant_id=tenant_id,
error=str(e),
exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to delete tenant data: {str(e)}"
)
@router.get(
route_builder.build_base_route("tenant/{tenant_id}/deletion-preview", include_tenant_prefix=False),
response_model=dict
)
@service_only_access
async def preview_tenant_data_deletion(
tenant_id: str = Path(..., description="Tenant ID to preview deletion for"),
current_user: dict = Depends(get_current_user_dep)
):
"""
Preview what data would be deleted for a tenant (dry-run)
This endpoint shows counts of all data that would be deleted
without actually deleting anything. Useful for:
- Confirming deletion scope before execution
- Auditing and compliance
- Troubleshooting
Returns:
Dictionary with entity names and their counts
"""
from app.services.tenant_deletion_service import ForecastingTenantDeletionService
try:
logger.info("forecasting.tenant_deletion.preview_called", tenant_id=tenant_id)
db_manager = create_database_manager(settings.DATABASE_URL, "forecasting")
async with db_manager.get_session() as session:
deletion_service = ForecastingTenantDeletionService(session)
preview = await deletion_service.get_tenant_data_preview(tenant_id)
total_records = sum(preview.values())
return {
"tenant_id": tenant_id,
"service": "forecasting",
"preview": preview,
"total_records": total_records,
"warning": "These records will be permanently deleted and cannot be recovered"
}
except Exception as e:
logger.error("forecasting.tenant_deletion.preview_error",
tenant_id=tenant_id,
error=str(e),
exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to preview tenant data deletion: {str(e)}"
)

View File

@@ -0,0 +1,240 @@
# services/forecasting/app/services/tenant_deletion_service.py
"""
Tenant Data Deletion Service for Forecasting Service
Handles deletion of all forecasting-related data for a tenant
"""
from typing import Dict
from sqlalchemy import select, func, delete
from sqlalchemy.ext.asyncio import AsyncSession
import structlog
from shared.services.tenant_deletion import (
BaseTenantDataDeletionService,
TenantDataDeletionResult
)
from app.models import (
Forecast,
PredictionBatch,
ModelPerformanceMetric,
PredictionCache,
AuditLog
)
logger = structlog.get_logger(__name__)
class ForecastingTenantDeletionService(BaseTenantDataDeletionService):
"""Service for deleting all forecasting-related data for a tenant"""
def __init__(self, db: AsyncSession):
self.db = db
self.service_name = "forecasting"
async def get_tenant_data_preview(self, tenant_id: str) -> Dict[str, int]:
"""
Get counts of what would be deleted for a tenant (dry-run)
Args:
tenant_id: The tenant ID to preview deletion for
Returns:
Dictionary with entity names and their counts
"""
logger.info("forecasting.tenant_deletion.preview", tenant_id=tenant_id)
preview = {}
try:
# Count forecasts
forecast_count = await self.db.scalar(
select(func.count(Forecast.id)).where(
Forecast.tenant_id == tenant_id
)
)
preview["forecasts"] = forecast_count or 0
# Count prediction batches
batch_count = await self.db.scalar(
select(func.count(PredictionBatch.id)).where(
PredictionBatch.tenant_id == tenant_id
)
)
preview["prediction_batches"] = batch_count or 0
# Count model performance metrics
metric_count = await self.db.scalar(
select(func.count(ModelPerformanceMetric.id)).where(
ModelPerformanceMetric.tenant_id == tenant_id
)
)
preview["model_performance_metrics"] = metric_count or 0
# Count prediction cache entries
cache_count = await self.db.scalar(
select(func.count(PredictionCache.id)).where(
PredictionCache.tenant_id == tenant_id
)
)
preview["prediction_cache"] = cache_count or 0
# Count audit logs
audit_count = await self.db.scalar(
select(func.count(AuditLog.id)).where(
AuditLog.tenant_id == tenant_id
)
)
preview["audit_logs"] = audit_count or 0
logger.info(
"forecasting.tenant_deletion.preview_complete",
tenant_id=tenant_id,
preview=preview
)
except Exception as e:
logger.error(
"forecasting.tenant_deletion.preview_error",
tenant_id=tenant_id,
error=str(e),
exc_info=True
)
raise
return preview
async def delete_tenant_data(self, tenant_id: str) -> TenantDataDeletionResult:
"""
Permanently delete all forecasting data for a tenant
Deletion order:
1. PredictionCache (independent)
2. ModelPerformanceMetric (independent)
3. PredictionBatch (independent)
4. Forecast (independent)
5. AuditLog (independent)
Note: All tables are independent with no foreign key relationships
Args:
tenant_id: The tenant ID to delete data for
Returns:
TenantDataDeletionResult with deletion counts and any errors
"""
logger.info("forecasting.tenant_deletion.started", tenant_id=tenant_id)
result = TenantDataDeletionResult(tenant_id=tenant_id, service_name=self.service_name)
try:
# Step 1: Delete prediction cache
logger.info("forecasting.tenant_deletion.deleting_cache", tenant_id=tenant_id)
cache_result = await self.db.execute(
delete(PredictionCache).where(
PredictionCache.tenant_id == tenant_id
)
)
result.deleted_counts["prediction_cache"] = cache_result.rowcount
logger.info(
"forecasting.tenant_deletion.cache_deleted",
tenant_id=tenant_id,
count=cache_result.rowcount
)
# Step 2: Delete model performance metrics
logger.info("forecasting.tenant_deletion.deleting_metrics", tenant_id=tenant_id)
metrics_result = await self.db.execute(
delete(ModelPerformanceMetric).where(
ModelPerformanceMetric.tenant_id == tenant_id
)
)
result.deleted_counts["model_performance_metrics"] = metrics_result.rowcount
logger.info(
"forecasting.tenant_deletion.metrics_deleted",
tenant_id=tenant_id,
count=metrics_result.rowcount
)
# Step 3: Delete prediction batches
logger.info("forecasting.tenant_deletion.deleting_batches", tenant_id=tenant_id)
batches_result = await self.db.execute(
delete(PredictionBatch).where(
PredictionBatch.tenant_id == tenant_id
)
)
result.deleted_counts["prediction_batches"] = batches_result.rowcount
logger.info(
"forecasting.tenant_deletion.batches_deleted",
tenant_id=tenant_id,
count=batches_result.rowcount
)
# Step 4: Delete forecasts
logger.info("forecasting.tenant_deletion.deleting_forecasts", tenant_id=tenant_id)
forecasts_result = await self.db.execute(
delete(Forecast).where(
Forecast.tenant_id == tenant_id
)
)
result.deleted_counts["forecasts"] = forecasts_result.rowcount
logger.info(
"forecasting.tenant_deletion.forecasts_deleted",
tenant_id=tenant_id,
count=forecasts_result.rowcount
)
# Step 5: Delete audit logs
logger.info("forecasting.tenant_deletion.deleting_audit_logs", tenant_id=tenant_id)
audit_result = await self.db.execute(
delete(AuditLog).where(
AuditLog.tenant_id == tenant_id
)
)
result.deleted_counts["audit_logs"] = audit_result.rowcount
logger.info(
"forecasting.tenant_deletion.audit_logs_deleted",
tenant_id=tenant_id,
count=audit_result.rowcount
)
# Commit the transaction
await self.db.commit()
# Calculate total deleted
total_deleted = sum(result.deleted_counts.values())
logger.info(
"forecasting.tenant_deletion.completed",
tenant_id=tenant_id,
total_deleted=total_deleted,
breakdown=result.deleted_counts
)
result.success = True
except Exception as e:
await self.db.rollback()
error_msg = f"Failed to delete forecasting data for tenant {tenant_id}: {str(e)}"
logger.error(
"forecasting.tenant_deletion.failed",
tenant_id=tenant_id,
error=str(e),
exc_info=True
)
result.errors.append(error_msg)
result.success = False
return result
def get_forecasting_tenant_deletion_service(
db: AsyncSession
) -> ForecastingTenantDeletionService:
"""
Factory function to create ForecastingTenantDeletionService instance
Args:
db: AsyncSession database session
Returns:
ForecastingTenantDeletionService instance
"""
return ForecastingTenantDeletionService(db)