Add publish events to the training phase

This commit is contained in:
Urtzi Alfaro
2025-07-29 21:33:57 +02:00
parent f3e8a6dda8
commit 1ebc6ec911

View File

@@ -16,6 +16,8 @@ import pandas as pd
from app.services.data_client import DataClient
from app.services.date_alignment_service import DateAlignmentService, DateRange, DataSourceType, AlignedDateRange
from app.services.messaging import publish_job_progress, publish_job_failed
logger = logging.getLogger(__name__)
@dataclass
@@ -67,13 +69,16 @@ class TrainingDataOrchestrator:
try:
publish_job_progress(job_id, tenant_id, 5, "Extraer datos de venta")
sales_data = await self.data_client.fetch_sales_data(tenant_id)
# Step 1: Extract and validate sales data date range
publish_job_progress(job_id, tenant_id, 10, "Extraer y validar las fechas de de los datos de venta")
sales_date_range = self._extract_sales_date_range(sales_data)
logger.info(f"Sales data range detected: {sales_date_range.start} to {sales_date_range.end}")
# Step 2: Apply date alignment across all data sources
publish_job_progress(job_id, tenant_id, 15, "Aplicar la alineación de fechas en todas las fuentes de datos")
aligned_range = self.date_alignment_service.validate_and_align_dates(
user_sales_range=sales_date_range,
requested_start=requested_start,
@@ -85,15 +90,18 @@ class TrainingDataOrchestrator:
logger.info(f"Applied constraints: {aligned_range.constraints}")
# Step 3: Filter sales data to aligned date range
publish_job_progress(job_id, tenant_id, 20, "Aplicar la alineación de fechas en todas las fuentes de datos")
filtered_sales = self._filter_sales_data(sales_data, aligned_range)
# Step 4: Collect external data sources concurrently
logger.info("Collecting external data sources...")
publish_job_progress(job_id, tenant_id, 25, "Recopilación de fuentes de datos externas")
weather_data, traffic_data = await self._collect_external_data(
aligned_range, bakery_location, tenant_id
)
# Step 5: Validate data quality
publish_job_progress(job_id, tenant_id, 30, "Validando la calidad de los datos")
data_quality_results = self._validate_data_sources(
filtered_sales, weather_data, traffic_data, aligned_range
)
@@ -120,6 +128,7 @@ class TrainingDataOrchestrator:
)
# Step 7: Final validation
publish_job_progress(job_id, tenant_id, 35, "Validancion final de los datos")
final_validation = self.validate_training_data_quality(training_dataset)
training_dataset.metadata["final_validation"] = final_validation
@@ -132,6 +141,7 @@ class TrainingDataOrchestrator:
return training_dataset
except Exception as e:
publish_job_failed(job_id, tenant_id, str(e))
logger.error(f"Training data preparation failed: {str(e)}")
raise ValueError(f"Failed to prepare training data: {str(e)}")