Fix issues
This commit is contained in:
@@ -73,14 +73,47 @@ class TrainingDataOrchestrator:
|
||||
logger.info(f"Starting comprehensive training data preparation for tenant {tenant_id}, job {job_id}")
|
||||
|
||||
try:
|
||||
# Step 1: Fetch and validate sales data (unified approach)
|
||||
sales_data = await self.data_client.fetch_sales_data(tenant_id, fetch_all=True)
|
||||
|
||||
sales_data = await self.data_client.fetch_sales_data(tenant_id)
|
||||
# Pre-flight validation moved here to eliminate duplicate fetching
|
||||
if not sales_data or len(sales_data) == 0:
|
||||
error_msg = f"No sales data available for tenant {tenant_id}. Please import sales data before starting training."
|
||||
logger.error("Training aborted - no sales data", tenant_id=tenant_id, job_id=job_id)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Step 1: Extract and validate sales data date range
|
||||
# Debug: Analyze the sales data structure to understand product distribution
|
||||
sales_df_debug = pd.DataFrame(sales_data)
|
||||
if 'inventory_product_id' in sales_df_debug.columns:
|
||||
unique_products_found = sales_df_debug['inventory_product_id'].unique()
|
||||
product_counts = sales_df_debug['inventory_product_id'].value_counts().to_dict()
|
||||
|
||||
logger.info("Sales data analysis (moved from pre-flight)",
|
||||
tenant_id=tenant_id,
|
||||
job_id=job_id,
|
||||
total_sales_records=len(sales_data),
|
||||
unique_products_count=len(unique_products_found),
|
||||
unique_products=unique_products_found.tolist(),
|
||||
records_per_product=product_counts)
|
||||
|
||||
if len(unique_products_found) == 1:
|
||||
logger.warning("POTENTIAL ISSUE: Only ONE unique product found in all sales data",
|
||||
tenant_id=tenant_id,
|
||||
single_product=unique_products_found[0],
|
||||
record_count=len(sales_data))
|
||||
else:
|
||||
logger.warning("No 'inventory_product_id' column found in sales data",
|
||||
tenant_id=tenant_id,
|
||||
columns=list(sales_df_debug.columns))
|
||||
|
||||
logger.info(f"Sales data validation passed: {len(sales_data)} sales records found",
|
||||
tenant_id=tenant_id, job_id=job_id)
|
||||
|
||||
# Step 2: Extract and validate sales data date range
|
||||
sales_date_range = self._extract_sales_date_range(sales_data)
|
||||
logger.info(f"Sales data range detected: {sales_date_range.start} to {sales_date_range.end}")
|
||||
|
||||
# Step 2: Apply date alignment across all data sources
|
||||
# Step 3: Apply date alignment across all data sources
|
||||
aligned_range = self.date_alignment_service.validate_and_align_dates(
|
||||
user_sales_range=sales_date_range,
|
||||
requested_start=requested_start,
|
||||
@@ -91,21 +124,21 @@ class TrainingDataOrchestrator:
|
||||
if aligned_range.constraints:
|
||||
logger.info(f"Applied constraints: {aligned_range.constraints}")
|
||||
|
||||
# Step 3: Filter sales data to aligned date range
|
||||
# Step 4: Filter sales data to aligned date range
|
||||
filtered_sales = self._filter_sales_data(sales_data, aligned_range)
|
||||
|
||||
# Step 4: Collect external data sources concurrently
|
||||
# Step 5: Collect external data sources concurrently
|
||||
logger.info("Collecting external data sources...")
|
||||
weather_data, traffic_data = await self._collect_external_data(
|
||||
aligned_range, bakery_location, tenant_id
|
||||
)
|
||||
|
||||
# Step 5: Validate data quality
|
||||
# Step 6: Validate data quality
|
||||
data_quality_results = self._validate_data_sources(
|
||||
filtered_sales, weather_data, traffic_data, aligned_range
|
||||
)
|
||||
|
||||
# Step 6: Create comprehensive training dataset
|
||||
# Step 7: Create comprehensive training dataset
|
||||
training_dataset = TrainingDataSet(
|
||||
sales_data=filtered_sales,
|
||||
weather_data=weather_data,
|
||||
@@ -126,7 +159,7 @@ class TrainingDataOrchestrator:
|
||||
}
|
||||
)
|
||||
|
||||
# Step 7: Final validation
|
||||
# Step 8: Final validation
|
||||
final_validation = self.validate_training_data_quality(training_dataset)
|
||||
training_dataset.metadata["final_validation"] = final_validation
|
||||
|
||||
@@ -375,14 +408,16 @@ class TrainingDataOrchestrator:
|
||||
start_date_str = aligned_range.start.isoformat()
|
||||
end_date_str = aligned_range.end.isoformat()
|
||||
|
||||
# Enhanced: Fetch traffic data using new abstracted service
|
||||
# Enhanced: Fetch traffic data using unified cache-first method
|
||||
# This automatically detects the appropriate city and uses the right client
|
||||
traffic_data = await self.data_client.fetch_traffic_data(
|
||||
traffic_data = await self.data_client.fetch_traffic_data_unified(
|
||||
tenant_id=tenant_id,
|
||||
start_date=start_date_str,
|
||||
end_date=end_date_str,
|
||||
latitude=lat,
|
||||
longitude=lon)
|
||||
longitude=lon,
|
||||
force_refresh=False # Use cache-first strategy
|
||||
)
|
||||
|
||||
# Enhanced validation including pedestrian inference data
|
||||
if self._validate_traffic_data_enhanced(traffic_data):
|
||||
@@ -461,54 +496,6 @@ class TrainingDataOrchestrator:
|
||||
minimal_traffic_data = [{"city": "madrid", "source": "legacy"}] * min(record_count, 1)
|
||||
self._log_enhanced_traffic_data_storage(lat, lon, aligned_range, record_count, minimal_traffic_data)
|
||||
|
||||
async def retrieve_stored_traffic_for_retraining(
|
||||
self,
|
||||
bakery_location: Tuple[float, float],
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
tenant_id: str
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Retrieve previously stored traffic data for model re-training
|
||||
This method specifically accesses the stored traffic data without making new API calls
|
||||
"""
|
||||
lat, lon = bakery_location
|
||||
|
||||
try:
|
||||
# Use the dedicated stored traffic data method for training
|
||||
stored_traffic_data = await self.data_client.fetch_stored_traffic_data_for_training(
|
||||
tenant_id=tenant_id,
|
||||
start_date=start_date.isoformat(),
|
||||
end_date=end_date.isoformat(),
|
||||
latitude=lat,
|
||||
longitude=lon
|
||||
)
|
||||
|
||||
if stored_traffic_data:
|
||||
logger.info(
|
||||
f"Retrieved {len(stored_traffic_data)} stored traffic records for re-training",
|
||||
location=f"{lat:.4f},{lon:.4f}",
|
||||
date_range=f"{start_date.isoformat()} to {end_date.isoformat()}",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
return stored_traffic_data
|
||||
else:
|
||||
logger.warning(
|
||||
"No stored traffic data found for re-training",
|
||||
location=f"{lat:.4f},{lon:.4f}",
|
||||
date_range=f"{start_date.isoformat()} to {end_date.isoformat()}"
|
||||
)
|
||||
return []
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to retrieve stored traffic data for re-training: {e}",
|
||||
location=f"{lat:.4f},{lon:.4f}",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
return []
|
||||
|
||||
def _validate_weather_data(self, weather_data: List[Dict[str, Any]]) -> bool:
|
||||
"""Validate weather data quality"""
|
||||
if not weather_data:
|
||||
|
||||
Reference in New Issue
Block a user