Improve the frontend and repository layer

This commit is contained in:
Urtzi Alfaro
2025-10-23 07:44:54 +02:00
parent 8d30172483
commit 07c33fa578
112 changed files with 14726 additions and 2733 deletions

View File

@@ -66,66 +66,25 @@ class ForecastingAlertService(BaseAlertService, AlertServiceMixin):
"""Check for predicted weekend demand surges (alerts)"""
try:
self._checks_performed += 1
query = """
WITH weekend_forecast AS (
SELECT
f.tenant_id,
f.inventory_product_id,
f.product_name,
f.predicted_demand,
f.forecast_date,
LAG(f.predicted_demand, 7) OVER (
PARTITION BY f.tenant_id, f.inventory_product_id
ORDER BY f.forecast_date
) as prev_week_demand,
AVG(f.predicted_demand) OVER (
PARTITION BY f.tenant_id, f.inventory_product_id
ORDER BY f.forecast_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as avg_weekly_demand
FROM forecasts f
WHERE f.forecast_date >= CURRENT_DATE + INTERVAL '1 day'
AND f.forecast_date <= CURRENT_DATE + INTERVAL '3 days'
AND EXTRACT(DOW FROM f.forecast_date) IN (6, 0) -- Saturday, Sunday
AND f.tenant_id = $1
),
surge_analysis AS (
SELECT *,
CASE
WHEN prev_week_demand > 0 THEN
(predicted_demand - prev_week_demand) / prev_week_demand * 100
ELSE 0
END as growth_percentage,
CASE
WHEN avg_weekly_demand > 0 THEN
(predicted_demand - avg_weekly_demand) / avg_weekly_demand * 100
ELSE 0
END as avg_growth_percentage
FROM weekend_forecast
)
SELECT * FROM surge_analysis
WHERE growth_percentage > 50 OR avg_growth_percentage > 50
ORDER BY growth_percentage DESC
"""
from app.repositories.forecasting_alert_repository import ForecastingAlertRepository
tenants = await self.get_active_tenants()
for tenant_id in tenants:
try:
from sqlalchemy import text
async with self.db_manager.get_session() as session:
result = await session.execute(text(query), {"tenant_id": tenant_id})
surges = result.fetchall()
alert_repo = ForecastingAlertRepository(session)
surges = await alert_repo.get_weekend_demand_surges(tenant_id)
for surge in surges:
await self._process_weekend_surge(tenant_id, surge)
except Exception as e:
logger.error("Error checking weekend demand surge",
tenant_id=str(tenant_id),
logger.error("Error checking weekend demand surge",
tenant_id=str(tenant_id),
error=str(e))
except Exception as e:
logger.error("Weekend demand surge check failed", error=str(e))
self._errors_count += 1
@@ -184,64 +143,25 @@ class ForecastingAlertService(BaseAlertService, AlertServiceMixin):
"""Check for weather impact on demand (alerts)"""
try:
self._checks_performed += 1
# Get weather forecast data and correlate with demand patterns
query = """
WITH weather_impact AS (
SELECT
f.tenant_id,
f.inventory_product_id,
f.product_name,
f.predicted_demand,
f.forecast_date,
f.weather_precipitation,
f.weather_temperature,
f.traffic_volume,
AVG(f.predicted_demand) OVER (
PARTITION BY f.tenant_id, f.inventory_product_id
ORDER BY f.forecast_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as avg_demand
FROM forecasts f
WHERE f.forecast_date >= CURRENT_DATE + INTERVAL '1 day'
AND f.forecast_date <= CURRENT_DATE + INTERVAL '2 days'
AND f.tenant_id = $1
),
rain_impact AS (
SELECT *,
CASE
WHEN weather_precipitation > 2.0 THEN true
ELSE false
END as rain_forecast,
CASE
WHEN traffic_volume < 80 THEN true
ELSE false
END as low_traffic_expected,
(predicted_demand - avg_demand) / avg_demand * 100 as demand_change
FROM weather_impact
)
SELECT * FROM rain_impact
WHERE rain_forecast = true OR demand_change < -15
ORDER BY demand_change ASC
"""
from app.repositories.forecasting_alert_repository import ForecastingAlertRepository
tenants = await self.get_active_tenants()
for tenant_id in tenants:
try:
from sqlalchemy import text
async with self.db_manager.get_session() as session:
result = await session.execute(text(query), {"tenant_id": tenant_id})
weather_impacts = result.fetchall()
alert_repo = ForecastingAlertRepository(session)
weather_impacts = await alert_repo.get_weather_impact_forecasts(tenant_id)
for impact in weather_impacts:
await self._process_weather_impact(tenant_id, impact)
except Exception as e:
logger.error("Error checking weather impact",
tenant_id=str(tenant_id),
logger.error("Error checking weather impact",
tenant_id=str(tenant_id),
error=str(e))
except Exception as e:
logger.error("Weather impact check failed", error=str(e))
self._errors_count += 1
@@ -308,63 +228,34 @@ class ForecastingAlertService(BaseAlertService, AlertServiceMixin):
"""Check for upcoming Spanish holidays requiring preparation (alerts)"""
try:
self._checks_performed += 1
# Check for Spanish holidays in the next 3-7 days
upcoming_holidays = await self._get_upcoming_spanish_holidays(3, 7)
if not upcoming_holidays:
return
# Analyze historical demand spikes for holidays
query = """
WITH holiday_demand AS (
SELECT
f.tenant_id,
f.inventory_product_id,
f.product_name,
AVG(f.predicted_demand) as avg_holiday_demand,
AVG(CASE WHEN f.is_holiday = false THEN f.predicted_demand END) as avg_normal_demand,
COUNT(*) as forecast_count
FROM forecasts f
WHERE f.created_at > CURRENT_DATE - INTERVAL '365 days'
AND f.tenant_id = $1
GROUP BY f.tenant_id, f.inventory_product_id, f.product_name
HAVING COUNT(*) >= 10
),
demand_spike_analysis AS (
SELECT *,
CASE
WHEN avg_normal_demand > 0 THEN
(avg_holiday_demand - avg_normal_demand) / avg_normal_demand * 100
ELSE 0
END as spike_percentage
FROM holiday_demand
)
SELECT * FROM demand_spike_analysis
WHERE spike_percentage > 25
ORDER BY spike_percentage DESC
"""
from app.repositories.forecasting_alert_repository import ForecastingAlertRepository
tenants = await self.get_active_tenants()
for tenant_id in tenants:
try:
from sqlalchemy import text
async with self.db_manager.get_session() as session:
result = await session.execute(text(query), {"tenant_id": tenant_id})
demand_spikes = result.fetchall()
alert_repo = ForecastingAlertRepository(session)
demand_spikes = await alert_repo.get_holiday_demand_spikes(tenant_id)
for holiday_info in upcoming_holidays:
for spike in demand_spikes:
await self._process_holiday_preparation(
tenant_id, holiday_info, spike
)
except Exception as e:
logger.error("Error checking holiday preparation",
tenant_id=str(tenant_id),
logger.error("Error checking holiday preparation",
tenant_id=str(tenant_id),
error=str(e))
except Exception as e:
logger.error("Holiday preparation check failed", error=str(e))
self._errors_count += 1
@@ -415,57 +306,25 @@ class ForecastingAlertService(BaseAlertService, AlertServiceMixin):
"""Analyze demand patterns for recommendations"""
try:
self._checks_performed += 1
# Analyze weekly patterns for optimization opportunities
query = """
WITH weekly_patterns AS (
SELECT
f.tenant_id,
f.inventory_product_id,
f.product_name,
EXTRACT(DOW FROM f.forecast_date) as day_of_week,
AVG(f.predicted_demand) as avg_demand,
STDDEV(f.predicted_demand) as demand_variance,
COUNT(*) as data_points
FROM forecasts f
WHERE f.created_at > CURRENT_DATE - INTERVAL '60 days'
AND f.tenant_id = $1
GROUP BY f.tenant_id, f.inventory_product_id, f.product_name, EXTRACT(DOW FROM f.forecast_date)
HAVING COUNT(*) >= 5
),
pattern_analysis AS (
SELECT
tenant_id, inventory_product_id, product_name,
MAX(avg_demand) as peak_demand,
MIN(avg_demand) as min_demand,
AVG(avg_demand) as overall_avg,
MAX(avg_demand) - MIN(avg_demand) as demand_range
FROM weekly_patterns
GROUP BY tenant_id, inventory_product_id, product_name
)
SELECT * FROM pattern_analysis
WHERE demand_range > overall_avg * 0.3
AND peak_demand > overall_avg * 1.5
ORDER BY demand_range DESC
"""
from app.repositories.forecasting_alert_repository import ForecastingAlertRepository
tenants = await self.get_active_tenants()
for tenant_id in tenants:
try:
from sqlalchemy import text
async with self.db_manager.get_session() as session:
result = await session.execute(text(query), {"tenant_id": tenant_id})
patterns = result.fetchall()
alert_repo = ForecastingAlertRepository(session)
patterns = await alert_repo.get_demand_pattern_analysis(tenant_id)
for pattern in patterns:
await self._generate_demand_pattern_recommendation(tenant_id, pattern)
except Exception as e:
logger.error("Error analyzing demand patterns",
tenant_id=str(tenant_id),
logger.error("Error analyzing demand patterns",
tenant_id=str(tenant_id),
error=str(e))
except Exception as e:
logger.error("Demand pattern analysis failed", error=str(e))
self._errors_count += 1