Fix new services implementation 3
This commit is contained in:
@@ -62,7 +62,7 @@ class EnhancedBakeryDataProcessor:
|
||||
sales_data: pd.DataFrame,
|
||||
weather_data: pd.DataFrame,
|
||||
traffic_data: pd.DataFrame,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
tenant_id: str = None,
|
||||
job_id: str = None,
|
||||
session=None) -> pd.DataFrame:
|
||||
@@ -73,7 +73,7 @@ class EnhancedBakeryDataProcessor:
|
||||
sales_data: Historical sales data for the product
|
||||
weather_data: Weather data
|
||||
traffic_data: Traffic data
|
||||
product_name: Product name for logging
|
||||
inventory_product_id: Inventory product UUID for logging
|
||||
tenant_id: Optional tenant ID for tracking
|
||||
job_id: Optional job ID for tracking
|
||||
|
||||
@@ -82,7 +82,7 @@ class EnhancedBakeryDataProcessor:
|
||||
"""
|
||||
try:
|
||||
logger.info("Preparing enhanced training data using repository pattern",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
tenant_id=tenant_id,
|
||||
job_id=job_id)
|
||||
|
||||
@@ -93,11 +93,11 @@ class EnhancedBakeryDataProcessor:
|
||||
# Log data preparation start if we have tracking info
|
||||
if job_id and tenant_id:
|
||||
await repos['training_log'].update_log_progress(
|
||||
job_id, 15, f"preparing_data_{product_name}", "running"
|
||||
job_id, 15, f"preparing_data_{inventory_product_id}", "running"
|
||||
)
|
||||
|
||||
# Step 1: Convert and validate sales data
|
||||
sales_clean = await self._process_sales_data(sales_data, product_name)
|
||||
sales_clean = await self._process_sales_data(sales_data, inventory_product_id)
|
||||
|
||||
# FIX: Ensure timezone awareness before any operations
|
||||
sales_clean = self._ensure_timezone_aware(sales_clean)
|
||||
@@ -129,32 +129,32 @@ class EnhancedBakeryDataProcessor:
|
||||
# Step 9: Store processing metadata if we have a tenant
|
||||
if tenant_id:
|
||||
await self._store_processing_metadata(
|
||||
repos, tenant_id, product_name, prophet_data, job_id
|
||||
repos, tenant_id, inventory_product_id, prophet_data, job_id
|
||||
)
|
||||
|
||||
logger.info("Enhanced training data prepared successfully",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
data_points=len(prophet_data))
|
||||
|
||||
return prophet_data
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error preparing enhanced training data",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e))
|
||||
raise
|
||||
|
||||
async def _store_processing_metadata(self,
|
||||
repos: Dict,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
processed_data: pd.DataFrame,
|
||||
job_id: str = None):
|
||||
"""Store data processing metadata using repository"""
|
||||
try:
|
||||
# Create processing metadata
|
||||
metadata = {
|
||||
"product_name": product_name,
|
||||
"inventory_product_id": inventory_product_id,
|
||||
"data_points": len(processed_data),
|
||||
"date_range": {
|
||||
"start": processed_data['ds'].min().isoformat(),
|
||||
@@ -167,7 +167,7 @@ class EnhancedBakeryDataProcessor:
|
||||
# Log processing completion
|
||||
if job_id:
|
||||
await repos['training_log'].update_log_progress(
|
||||
job_id, 25, f"data_prepared_{product_name}", "running"
|
||||
job_id, 25, f"data_prepared_{inventory_product_id}", "running"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -270,7 +270,7 @@ class EnhancedBakeryDataProcessor:
|
||||
logger.warning("Date alignment failed, using original data", error=str(e))
|
||||
return sales_data
|
||||
|
||||
async def _process_sales_data(self, sales_data: pd.DataFrame, product_name: str) -> pd.DataFrame:
|
||||
async def _process_sales_data(self, sales_data: pd.DataFrame, inventory_product_id: str) -> pd.DataFrame:
|
||||
"""Process and clean sales data with enhanced validation"""
|
||||
sales_clean = sales_data.copy()
|
||||
|
||||
@@ -305,9 +305,9 @@ class EnhancedBakeryDataProcessor:
|
||||
sales_clean = sales_clean.dropna(subset=['quantity'])
|
||||
sales_clean = sales_clean[sales_clean['quantity'] >= 0] # No negative sales
|
||||
|
||||
# Filter for the specific product if product_name column exists
|
||||
if 'product_name' in sales_clean.columns:
|
||||
sales_clean = sales_clean[sales_clean['product_name'] == product_name]
|
||||
# Filter for the specific product if inventory_product_id column exists
|
||||
if 'inventory_product_id' in sales_clean.columns:
|
||||
sales_clean = sales_clean[sales_clean['inventory_product_id'] == inventory_product_id]
|
||||
|
||||
# Remove duplicate dates (keep the one with highest quantity)
|
||||
sales_clean = sales_clean.sort_values(['date', 'quantity'], ascending=[True, False])
|
||||
|
||||
@@ -52,7 +52,7 @@ class BakeryProphetManager:
|
||||
|
||||
async def train_bakery_model(self,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
df: pd.DataFrame,
|
||||
job_id: str) -> Dict[str, Any]:
|
||||
"""
|
||||
@@ -60,10 +60,10 @@ class BakeryProphetManager:
|
||||
Same interface as before - optimization happens automatically.
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Training optimized bakery model for {product_name}")
|
||||
logger.info(f"Training optimized bakery model for {inventory_product_id}")
|
||||
|
||||
# Validate input data
|
||||
await self._validate_training_data(df, product_name)
|
||||
await self._validate_training_data(df, inventory_product_id)
|
||||
|
||||
# Prepare data for Prophet
|
||||
prophet_data = await self._prepare_prophet_data(df)
|
||||
@@ -72,8 +72,8 @@ class BakeryProphetManager:
|
||||
regressor_columns = self._extract_regressor_columns(prophet_data)
|
||||
|
||||
# Automatically optimize hyperparameters (this is the new part)
|
||||
logger.info(f"Optimizing hyperparameters for {product_name}...")
|
||||
best_params = await self._optimize_hyperparameters(prophet_data, product_name, regressor_columns)
|
||||
logger.info(f"Optimizing hyperparameters for {inventory_product_id}...")
|
||||
best_params = await self._optimize_hyperparameters(prophet_data, inventory_product_id, regressor_columns)
|
||||
|
||||
# Create optimized Prophet model
|
||||
model = self._create_optimized_prophet_model(best_params, regressor_columns)
|
||||
@@ -92,7 +92,7 @@ class BakeryProphetManager:
|
||||
# Store model and metrics - Generate proper UUID for model_id
|
||||
model_id = str(uuid.uuid4())
|
||||
model_path = await self._store_model(
|
||||
tenant_id, product_name, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
|
||||
tenant_id, inventory_product_id, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
|
||||
)
|
||||
|
||||
# Return same format as before, but with optimization info
|
||||
@@ -112,17 +112,17 @@ class BakeryProphetManager:
|
||||
}
|
||||
}
|
||||
|
||||
logger.info(f"Optimized model trained successfully for {product_name}. "
|
||||
logger.info(f"Optimized model trained successfully for {inventory_product_id}. "
|
||||
f"MAPE: {training_metrics.get('optimized_mape', 'N/A')}%")
|
||||
return model_info
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to train optimized bakery model for {product_name}: {str(e)}")
|
||||
logger.error(f"Failed to train optimized bakery model for {inventory_product_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
async def _optimize_hyperparameters(self,
|
||||
df: pd.DataFrame,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
regressor_columns: List[str]) -> Dict[str, Any]:
|
||||
"""
|
||||
Automatically optimize Prophet hyperparameters using Bayesian optimization.
|
||||
@@ -130,7 +130,7 @@ class BakeryProphetManager:
|
||||
"""
|
||||
|
||||
# Determine product category automatically
|
||||
product_category = self._classify_product(product_name, df)
|
||||
product_category = self._classify_product(inventory_product_id, df)
|
||||
|
||||
# Set optimization parameters based on category
|
||||
n_trials = {
|
||||
@@ -140,7 +140,7 @@ class BakeryProphetManager:
|
||||
'intermittent': 15 # Reduced from 25
|
||||
}.get(product_category, 25)
|
||||
|
||||
logger.info(f"Product {product_name} classified as {product_category}, using {n_trials} trials")
|
||||
logger.info(f"Product {inventory_product_id} classified as {product_category}, using {n_trials} trials")
|
||||
|
||||
# Check data quality and adjust strategy
|
||||
total_sales = df['y'].sum()
|
||||
@@ -148,12 +148,12 @@ class BakeryProphetManager:
|
||||
mean_sales = df['y'].mean()
|
||||
non_zero_days = len(df[df['y'] > 0])
|
||||
|
||||
logger.info(f"Data analysis for {product_name}: total_sales={total_sales:.1f}, "
|
||||
logger.info(f"Data analysis for {inventory_product_id}: total_sales={total_sales:.1f}, "
|
||||
f"zero_ratio={zero_ratio:.2f}, mean_sales={mean_sales:.2f}, non_zero_days={non_zero_days}")
|
||||
|
||||
# Adjust strategy based on data characteristics
|
||||
if zero_ratio > 0.8 or non_zero_days < 30:
|
||||
logger.warning(f"Very sparse data for {product_name}, using minimal optimization")
|
||||
logger.warning(f"Very sparse data for {inventory_product_id}, using minimal optimization")
|
||||
return {
|
||||
'changepoint_prior_scale': 0.001,
|
||||
'seasonality_prior_scale': 0.01,
|
||||
@@ -166,7 +166,7 @@ class BakeryProphetManager:
|
||||
'uncertainty_samples': 100 # ✅ FIX: Minimal uncertainty sampling for very sparse data
|
||||
}
|
||||
elif zero_ratio > 0.6:
|
||||
logger.info(f"Moderate sparsity for {product_name}, using conservative optimization")
|
||||
logger.info(f"Moderate sparsity for {inventory_product_id}, using conservative optimization")
|
||||
return {
|
||||
'changepoint_prior_scale': 0.01,
|
||||
'seasonality_prior_scale': 0.1,
|
||||
@@ -180,7 +180,7 @@ class BakeryProphetManager:
|
||||
}
|
||||
|
||||
# Use unique seed for each product to avoid identical results
|
||||
product_seed = hash(product_name) % 10000
|
||||
product_seed = hash(str(inventory_product_id)) % 10000
|
||||
|
||||
def objective(trial):
|
||||
try:
|
||||
@@ -284,13 +284,13 @@ class BakeryProphetManager:
|
||||
cv_scores.append(mape_like)
|
||||
|
||||
except Exception as fold_error:
|
||||
logger.debug(f"Fold failed for {product_name} trial {trial.number}: {str(fold_error)}")
|
||||
logger.debug(f"Fold failed for {inventory_product_id} trial {trial.number}: {str(fold_error)}")
|
||||
continue
|
||||
|
||||
return np.mean(cv_scores) if len(cv_scores) > 0 else 100.0
|
||||
|
||||
except Exception as trial_error:
|
||||
logger.debug(f"Trial {trial.number} failed for {product_name}: {str(trial_error)}")
|
||||
logger.debug(f"Trial {trial.number} failed for {inventory_product_id}: {str(trial_error)}")
|
||||
return 100.0
|
||||
|
||||
# Run optimization with product-specific seed
|
||||
@@ -304,19 +304,19 @@ class BakeryProphetManager:
|
||||
best_params = study.best_params
|
||||
best_score = study.best_value
|
||||
|
||||
logger.info(f"Optimization completed for {product_name}. Best score: {best_score:.2f}%. "
|
||||
logger.info(f"Optimization completed for {inventory_product_id}. Best score: {best_score:.2f}%. "
|
||||
f"Parameters: {best_params}")
|
||||
|
||||
# ✅ FIX: Log uncertainty sampling configuration for debugging confidence intervals
|
||||
uncertainty_samples = best_params.get('uncertainty_samples', 500)
|
||||
logger.info(f"Prophet model will use {uncertainty_samples} uncertainty samples for {product_name} "
|
||||
logger.info(f"Prophet model will use {uncertainty_samples} uncertainty samples for {inventory_product_id} "
|
||||
f"(category: {product_category}, zero_ratio: {zero_ratio:.2f})")
|
||||
|
||||
return best_params
|
||||
|
||||
def _classify_product(self, product_name: str, sales_data: pd.DataFrame) -> str:
|
||||
def _classify_product(self, inventory_product_id: str, sales_data: pd.DataFrame) -> str:
|
||||
"""Automatically classify product for optimization strategy - improved for bakery data"""
|
||||
product_lower = product_name.lower()
|
||||
product_lower = str(inventory_product_id).lower()
|
||||
|
||||
# Calculate sales statistics
|
||||
total_sales = sales_data['y'].sum()
|
||||
@@ -324,7 +324,7 @@ class BakeryProphetManager:
|
||||
zero_ratio = (sales_data['y'] == 0).sum() / len(sales_data)
|
||||
non_zero_days = len(sales_data[sales_data['y'] > 0])
|
||||
|
||||
logger.info(f"Product classification for {product_name}: total_sales={total_sales:.1f}, "
|
||||
logger.info(f"Product classification for {inventory_product_id}: total_sales={total_sales:.1f}, "
|
||||
f"mean_sales={mean_sales:.2f}, zero_ratio={zero_ratio:.2f}, non_zero_days={non_zero_days}")
|
||||
|
||||
# Improved classification logic for bakery products
|
||||
@@ -499,7 +499,7 @@ class BakeryProphetManager:
|
||||
|
||||
async def _store_model(self,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
model: Prophet,
|
||||
model_id: str,
|
||||
training_data: pd.DataFrame,
|
||||
@@ -520,7 +520,7 @@ class BakeryProphetManager:
|
||||
metadata = {
|
||||
"model_id": model_id,
|
||||
"tenant_id": tenant_id,
|
||||
"product_name": product_name,
|
||||
"inventory_product_id": inventory_product_id,
|
||||
"regressor_columns": regressor_columns,
|
||||
"training_samples": len(training_data),
|
||||
"data_period": {
|
||||
@@ -539,7 +539,7 @@ class BakeryProphetManager:
|
||||
json.dump(metadata, f, indent=2, default=str)
|
||||
|
||||
# Store in memory
|
||||
model_key = f"{tenant_id}:{product_name}"
|
||||
model_key = f"{tenant_id}:{inventory_product_id}"
|
||||
self.models[model_key] = model
|
||||
self.model_metadata[model_key] = metadata
|
||||
|
||||
@@ -547,13 +547,13 @@ class BakeryProphetManager:
|
||||
try:
|
||||
async with self.database_manager.get_session() as db_session:
|
||||
# Deactivate previous models for this product
|
||||
await self._deactivate_previous_models_with_session(db_session, tenant_id, product_name)
|
||||
await self._deactivate_previous_models_with_session(db_session, tenant_id, inventory_product_id)
|
||||
|
||||
# Create new database record
|
||||
db_model = TrainedModel(
|
||||
id=model_id,
|
||||
tenant_id=tenant_id,
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
model_type="prophet_optimized",
|
||||
job_id=model_id.split('_')[0], # Extract job_id from model_id
|
||||
model_path=str(model_path),
|
||||
@@ -587,23 +587,23 @@ class BakeryProphetManager:
|
||||
logger.info(f"Optimized model stored at: {model_path}")
|
||||
return str(model_path)
|
||||
|
||||
async def _deactivate_previous_models_with_session(self, db_session, tenant_id: str, product_name: str):
|
||||
async def _deactivate_previous_models_with_session(self, db_session, tenant_id: str, inventory_product_id: str):
|
||||
"""Deactivate previous models for the same product using provided session"""
|
||||
try:
|
||||
# ✅ FIX: Wrap SQL string with text() for SQLAlchemy 2.0
|
||||
query = text("""
|
||||
UPDATE trained_models
|
||||
SET is_active = false, is_production = false
|
||||
WHERE tenant_id = :tenant_id AND product_name = :product_name
|
||||
WHERE tenant_id = :tenant_id AND inventory_product_id = :inventory_product_id
|
||||
""")
|
||||
|
||||
await db_session.execute(query, {
|
||||
"tenant_id": tenant_id,
|
||||
"product_name": product_name
|
||||
"inventory_product_id": inventory_product_id
|
||||
})
|
||||
|
||||
# Note: Don't commit here, let the calling method handle the transaction
|
||||
logger.info(f"Successfully deactivated previous models for {product_name}")
|
||||
logger.info(f"Successfully deactivated previous models for {inventory_product_id}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to deactivate previous models: {str(e)}")
|
||||
@@ -630,14 +630,14 @@ class BakeryProphetManager:
|
||||
logger.error(f"Failed to generate forecast: {str(e)}")
|
||||
raise
|
||||
|
||||
async def _validate_training_data(self, df: pd.DataFrame, product_name: str):
|
||||
async def _validate_training_data(self, df: pd.DataFrame, inventory_product_id: str):
|
||||
"""Validate training data quality (unchanged)"""
|
||||
if df.empty:
|
||||
raise ValueError(f"No training data available for {product_name}")
|
||||
raise ValueError(f"No training data available for {inventory_product_id}")
|
||||
|
||||
if len(df) < settings.MIN_TRAINING_DATA_DAYS:
|
||||
raise ValueError(
|
||||
f"Insufficient training data for {product_name}: "
|
||||
f"Insufficient training data for {inventory_product_id}: "
|
||||
f"{len(df)} days, minimum required: {settings.MIN_TRAINING_DATA_DAYS}"
|
||||
)
|
||||
|
||||
|
||||
@@ -91,7 +91,7 @@ class EnhancedBakeryMLTrainer:
|
||||
await self._validate_input_data(sales_df, tenant_id)
|
||||
|
||||
# Get unique products from the sales data
|
||||
products = sales_df['product_name'].unique().tolist()
|
||||
products = sales_df['inventory_product_id'].unique().tolist()
|
||||
logger.info("Training enhanced models",
|
||||
products_count=len(products),
|
||||
products=products)
|
||||
@@ -183,17 +183,17 @@ class EnhancedBakeryMLTrainer:
|
||||
"""Process data for all products using enhanced processor with repository tracking"""
|
||||
processed_data = {}
|
||||
|
||||
for product_name in products:
|
||||
for inventory_product_id in products:
|
||||
try:
|
||||
logger.info("Processing data for product using enhanced processor",
|
||||
product_name=product_name)
|
||||
inventory_product_id=inventory_product_id)
|
||||
|
||||
# Filter sales data for this product
|
||||
product_sales = sales_df[sales_df['product_name'] == product_name].copy()
|
||||
product_sales = sales_df[sales_df['inventory_product_id'] == inventory_product_id].copy()
|
||||
|
||||
if product_sales.empty:
|
||||
logger.warning("No sales data found for product",
|
||||
product_name=product_name)
|
||||
inventory_product_id=inventory_product_id)
|
||||
continue
|
||||
|
||||
# Use enhanced data processor with repository tracking
|
||||
@@ -201,19 +201,19 @@ class EnhancedBakeryMLTrainer:
|
||||
sales_data=product_sales,
|
||||
weather_data=weather_df,
|
||||
traffic_data=traffic_df,
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
tenant_id=tenant_id,
|
||||
job_id=job_id
|
||||
)
|
||||
|
||||
processed_data[product_name] = processed_product_data
|
||||
processed_data[inventory_product_id] = processed_product_data
|
||||
logger.info("Enhanced processing completed",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
data_points=len(processed_product_data))
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to process data using enhanced processor",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e))
|
||||
continue
|
||||
|
||||
@@ -231,15 +231,15 @@ class EnhancedBakeryMLTrainer:
|
||||
base_progress = 45
|
||||
max_progress = 85
|
||||
|
||||
for product_name, product_data in processed_data.items():
|
||||
for inventory_product_id, product_data in processed_data.items():
|
||||
product_start_time = time.time()
|
||||
try:
|
||||
logger.info("Training enhanced model",
|
||||
product_name=product_name)
|
||||
inventory_product_id=inventory_product_id)
|
||||
|
||||
# Check if we have enough data
|
||||
if len(product_data) < settings.MIN_TRAINING_DATA_DAYS:
|
||||
training_results[product_name] = {
|
||||
training_results[inventory_product_id] = {
|
||||
'status': 'skipped',
|
||||
'reason': 'insufficient_data',
|
||||
'data_points': len(product_data),
|
||||
@@ -247,7 +247,7 @@ class EnhancedBakeryMLTrainer:
|
||||
'message': f'Need at least {settings.MIN_TRAINING_DATA_DAYS} data points, got {len(product_data)}'
|
||||
}
|
||||
logger.warning("Skipping product due to insufficient data",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
data_points=len(product_data),
|
||||
min_required=settings.MIN_TRAINING_DATA_DAYS)
|
||||
continue
|
||||
@@ -255,24 +255,24 @@ class EnhancedBakeryMLTrainer:
|
||||
# Train the model using Prophet manager
|
||||
model_info = await self.prophet_manager.train_bakery_model(
|
||||
tenant_id=tenant_id,
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
df=product_data,
|
||||
job_id=job_id
|
||||
)
|
||||
|
||||
# Store model record using repository
|
||||
model_record = await self._create_model_record(
|
||||
repos, tenant_id, product_name, model_info, job_id, product_data
|
||||
repos, tenant_id, inventory_product_id, model_info, job_id, product_data
|
||||
)
|
||||
|
||||
# Create performance metrics record
|
||||
if model_info.get('training_metrics'):
|
||||
await self._create_performance_metrics(
|
||||
repos, model_record.id if model_record else None,
|
||||
tenant_id, product_name, model_info['training_metrics']
|
||||
tenant_id, inventory_product_id, model_info['training_metrics']
|
||||
)
|
||||
|
||||
training_results[product_name] = {
|
||||
training_results[inventory_product_id] = {
|
||||
'status': 'success',
|
||||
'model_info': model_info,
|
||||
'model_record_id': model_record.id if model_record else None,
|
||||
@@ -282,7 +282,7 @@ class EnhancedBakeryMLTrainer:
|
||||
}
|
||||
|
||||
logger.info("Successfully trained enhanced model",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
model_record_id=model_record.id if model_record else None)
|
||||
|
||||
completed_products = i + 1
|
||||
@@ -295,15 +295,15 @@ class EnhancedBakeryMLTrainer:
|
||||
await self.status_publisher.progress_update(
|
||||
progress=progress,
|
||||
step="model_training",
|
||||
current_product=product_name,
|
||||
step_details=f"Enhanced training completed for {product_name}"
|
||||
current_product=inventory_product_id,
|
||||
step_details=f"Enhanced training completed for {inventory_product_id}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to train enhanced model",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e))
|
||||
training_results[product_name] = {
|
||||
training_results[inventory_product_id] = {
|
||||
'status': 'error',
|
||||
'error_message': str(e),
|
||||
'data_points': len(product_data) if product_data is not None else 0,
|
||||
@@ -320,8 +320,8 @@ class EnhancedBakeryMLTrainer:
|
||||
await self.status_publisher.progress_update(
|
||||
progress=progress,
|
||||
step="model_training",
|
||||
current_product=product_name,
|
||||
step_details=f"Enhanced training failed for {product_name}: {str(e)}"
|
||||
current_product=inventory_product_id,
|
||||
step_details=f"Enhanced training failed for {inventory_product_id}: {str(e)}"
|
||||
)
|
||||
|
||||
return training_results
|
||||
@@ -329,7 +329,7 @@ class EnhancedBakeryMLTrainer:
|
||||
async def _create_model_record(self,
|
||||
repos: Dict,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
model_info: Dict,
|
||||
job_id: str,
|
||||
processed_data: pd.DataFrame):
|
||||
@@ -337,7 +337,7 @@ class EnhancedBakeryMLTrainer:
|
||||
try:
|
||||
model_data = {
|
||||
"tenant_id": tenant_id,
|
||||
"product_name": product_name,
|
||||
"inventory_product_id": inventory_product_id,
|
||||
"job_id": job_id,
|
||||
"model_type": "enhanced_prophet",
|
||||
"model_path": model_info.get("model_path"),
|
||||
@@ -357,7 +357,7 @@ class EnhancedBakeryMLTrainer:
|
||||
|
||||
model_record = await repos['model'].create_model(model_data)
|
||||
logger.info("Created enhanced model record",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
model_id=model_record.id)
|
||||
|
||||
# Create artifacts for model files
|
||||
@@ -374,7 +374,7 @@ class EnhancedBakeryMLTrainer:
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to create enhanced model record",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e))
|
||||
return None
|
||||
|
||||
@@ -382,14 +382,14 @@ class EnhancedBakeryMLTrainer:
|
||||
repos: Dict,
|
||||
model_id: str,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
metrics: Dict):
|
||||
"""Create performance metrics record using repository"""
|
||||
try:
|
||||
metric_data = {
|
||||
"model_id": str(model_id),
|
||||
"tenant_id": tenant_id,
|
||||
"product_name": product_name,
|
||||
"inventory_product_id": inventory_product_id,
|
||||
"mae": metrics.get("mae"),
|
||||
"mse": metrics.get("mse"),
|
||||
"rmse": metrics.get("rmse"),
|
||||
@@ -401,12 +401,12 @@ class EnhancedBakeryMLTrainer:
|
||||
|
||||
await repos['performance'].create_performance_metric(metric_data)
|
||||
logger.info("Created enhanced performance metrics",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
model_id=model_id)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to create enhanced performance metrics",
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e))
|
||||
|
||||
async def _calculate_enhanced_training_summary(self,
|
||||
@@ -532,7 +532,7 @@ class EnhancedBakeryMLTrainer:
|
||||
|
||||
async def evaluate_model_performance_enhanced(self,
|
||||
tenant_id: str,
|
||||
product_name: str,
|
||||
inventory_product_id: str,
|
||||
model_path: str,
|
||||
test_dataset: TrainingDataSet) -> Dict[str, Any]:
|
||||
"""
|
||||
@@ -553,17 +553,17 @@ class EnhancedBakeryMLTrainer:
|
||||
test_traffic_df = pd.DataFrame(test_dataset.traffic_data)
|
||||
|
||||
# Filter for specific product
|
||||
product_test_sales = test_sales_df[test_sales_df['product_name'] == product_name].copy()
|
||||
product_test_sales = test_sales_df[test_sales_df['inventory_product_id'] == inventory_product_id].copy()
|
||||
|
||||
if product_test_sales.empty:
|
||||
raise ValueError(f"No test data found for product: {product_name}")
|
||||
raise ValueError(f"No test data found for product: {inventory_product_id}")
|
||||
|
||||
# Process test data using enhanced processor
|
||||
processed_test_data = await self.enhanced_data_processor.prepare_training_data(
|
||||
sales_data=product_test_sales,
|
||||
weather_data=test_weather_df,
|
||||
traffic_data=test_traffic_df,
|
||||
product_name=product_name,
|
||||
inventory_product_id=inventory_product_id,
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
@@ -608,16 +608,16 @@ class EnhancedBakeryMLTrainer:
|
||||
metrics["mape"] = 100.0
|
||||
|
||||
# Store evaluation metrics in repository
|
||||
model_records = await repos['model'].get_models_by_product(tenant_id, product_name)
|
||||
model_records = await repos['model'].get_models_by_product(tenant_id, inventory_product_id)
|
||||
if model_records:
|
||||
latest_model = max(model_records, key=lambda x: x.created_at)
|
||||
await self._create_performance_metrics(
|
||||
repos, latest_model.id, tenant_id, product_name, metrics
|
||||
repos, latest_model.id, tenant_id, inventory_product_id, metrics
|
||||
)
|
||||
|
||||
result = {
|
||||
"tenant_id": tenant_id,
|
||||
"product_name": product_name,
|
||||
"inventory_product_id": inventory_product_id,
|
||||
"enhanced_evaluation_metrics": metrics,
|
||||
"test_samples": len(processed_test_data),
|
||||
"prediction_samples": len(forecast),
|
||||
|
||||
Reference in New Issue
Block a user