Fix new services implementation 3

This commit is contained in:
Urtzi Alfaro
2025-08-14 16:47:34 +02:00
parent 0951547e92
commit 03737430ee
51 changed files with 657 additions and 982 deletions

View File

@@ -28,22 +28,22 @@ router = APIRouter()
training_service = TrainingService()
@router.get("/tenants/{tenant_id}/models/{product_name}/active")
@router.get("/tenants/{tenant_id}/models/{inventory_product_id}/active")
async def get_active_model(
tenant_id: str = Path(..., description="Tenant ID"),
product_name: str = Path(..., description="Product name"),
inventory_product_id: str = Path(..., description="Inventory product UUID"),
db: AsyncSession = Depends(get_db)
):
"""
Get the active model for a product - used by forecasting service
"""
try:
logger.debug("Getting active model", tenant_id=tenant_id, product_name=product_name)
logger.debug("Getting active model", tenant_id=tenant_id, inventory_product_id=inventory_product_id)
# ✅ FIX: Wrap SQL with text() for SQLAlchemy 2.0 and add case-insensitive product name matching
query = text("""
SELECT * FROM trained_models
WHERE tenant_id = :tenant_id
AND LOWER(product_name) = LOWER(:product_name)
AND inventory_product_id = :inventory_product_id
AND is_active = true
AND is_production = true
ORDER BY created_at DESC
@@ -52,16 +52,16 @@ async def get_active_model(
result = await db.execute(query, {
"tenant_id": tenant_id,
"product_name": product_name
"inventory_product_id": inventory_product_id
})
model_record = result.fetchone()
if not model_record:
logger.info("No active model found", tenant_id=tenant_id, product_name=product_name)
logger.info("No active model found", tenant_id=tenant_id, inventory_product_id=inventory_product_id)
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"No active model found for product {product_name}"
detail=f"No active model found for product {inventory_product_id}"
)
# ✅ FIX: Wrap update query with text() too
@@ -99,11 +99,11 @@ async def get_active_model(
raise
except Exception as e:
error_msg = str(e) if str(e) else f"{type(e).__name__}: {repr(e)}"
logger.error(f"Failed to get active model: {error_msg}", tenant_id=tenant_id, product_name=product_name)
logger.error(f"Failed to get active model: {error_msg}", tenant_id=tenant_id, inventory_product_id=inventory_product_id)
# Handle client disconnection gracefully
if "EndOfStream" in str(type(e)) or "WouldBlock" in str(type(e)):
logger.info("Client disconnected during model retrieval", tenant_id=tenant_id, product_name=product_name)
logger.info("Client disconnected during model retrieval", tenant_id=tenant_id, inventory_product_id=inventory_product_id)
raise HTTPException(
status_code=status.HTTP_408_REQUEST_TIMEOUT,
detail="Request connection closed"
@@ -205,7 +205,7 @@ async def list_models(
models.append({
"model_id": str(record.id),
"tenant_id": str(record.tenant_id),
"product_name": record.product_name,
"inventory_product_id": str(record.inventory_product_id),
"model_type": record.model_type,
"model_path": record.model_path,
"version": 1, # Default version

View File

@@ -291,12 +291,12 @@ async def execute_enhanced_training_job_background(
job_id=job_id)
@router.post("/tenants/{tenant_id}/training/products/{product_name}", response_model=TrainingJobResponse)
@router.post("/tenants/{tenant_id}/training/products/{inventory_product_id}", response_model=TrainingJobResponse)
@track_execution_time("enhanced_single_product_training_duration_seconds", "training-service")
async def start_enhanced_single_product_training(
request: SingleProductTrainingRequest,
tenant_id: str = Path(..., description="Tenant ID"),
product_name: str = Path(..., description="Product name"),
inventory_product_id: str = Path(..., description="Inventory product UUID"),
request_obj: Request = None,
current_tenant: str = Depends(get_current_tenant_id_dep),
enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service)
@@ -323,7 +323,7 @@ async def start_enhanced_single_product_training(
)
logger.info("Starting enhanced single product training",
product_name=product_name,
inventory_product_id=inventory_product_id,
tenant_id=tenant_id)
# Record metrics
@@ -331,12 +331,12 @@ async def start_enhanced_single_product_training(
metrics.increment_counter("enhanced_single_product_training_total")
# Generate enhanced job ID
job_id = f"enhanced_single_{tenant_id}_{product_name}_{uuid.uuid4().hex[:8]}"
job_id = f"enhanced_single_{tenant_id}_{inventory_product_id}_{uuid.uuid4().hex[:8]}"
# Delegate to enhanced training service (single product method to be implemented)
result = await enhanced_training_service.start_single_product_training(
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
job_id=job_id,
bakery_location=request.bakery_location or (40.4168, -3.7038)
)
@@ -345,7 +345,7 @@ async def start_enhanced_single_product_training(
metrics.increment_counter("enhanced_single_product_training_success_total")
logger.info("Enhanced single product training completed",
product_name=product_name,
inventory_product_id=inventory_product_id,
job_id=job_id)
return TrainingJobResponse(**result)
@@ -355,7 +355,7 @@ async def start_enhanced_single_product_training(
metrics.increment_counter("enhanced_single_product_validation_errors_total")
logger.error("Enhanced single product training validation error",
error=str(e),
product_name=product_name)
inventory_product_id=inventory_product_id)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e)
@@ -365,7 +365,7 @@ async def start_enhanced_single_product_training(
metrics.increment_counter("enhanced_single_product_training_errors_total")
logger.error("Enhanced single product training failed",
error=str(e),
product_name=product_name)
inventory_product_id=inventory_product_id)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Enhanced single product training failed"

View File

@@ -62,7 +62,7 @@ class EnhancedBakeryDataProcessor:
sales_data: pd.DataFrame,
weather_data: pd.DataFrame,
traffic_data: pd.DataFrame,
product_name: str,
inventory_product_id: str,
tenant_id: str = None,
job_id: str = None,
session=None) -> pd.DataFrame:
@@ -73,7 +73,7 @@ class EnhancedBakeryDataProcessor:
sales_data: Historical sales data for the product
weather_data: Weather data
traffic_data: Traffic data
product_name: Product name for logging
inventory_product_id: Inventory product UUID for logging
tenant_id: Optional tenant ID for tracking
job_id: Optional job ID for tracking
@@ -82,7 +82,7 @@ class EnhancedBakeryDataProcessor:
"""
try:
logger.info("Preparing enhanced training data using repository pattern",
product_name=product_name,
inventory_product_id=inventory_product_id,
tenant_id=tenant_id,
job_id=job_id)
@@ -93,11 +93,11 @@ class EnhancedBakeryDataProcessor:
# Log data preparation start if we have tracking info
if job_id and tenant_id:
await repos['training_log'].update_log_progress(
job_id, 15, f"preparing_data_{product_name}", "running"
job_id, 15, f"preparing_data_{inventory_product_id}", "running"
)
# Step 1: Convert and validate sales data
sales_clean = await self._process_sales_data(sales_data, product_name)
sales_clean = await self._process_sales_data(sales_data, inventory_product_id)
# FIX: Ensure timezone awareness before any operations
sales_clean = self._ensure_timezone_aware(sales_clean)
@@ -129,32 +129,32 @@ class EnhancedBakeryDataProcessor:
# Step 9: Store processing metadata if we have a tenant
if tenant_id:
await self._store_processing_metadata(
repos, tenant_id, product_name, prophet_data, job_id
repos, tenant_id, inventory_product_id, prophet_data, job_id
)
logger.info("Enhanced training data prepared successfully",
product_name=product_name,
inventory_product_id=inventory_product_id,
data_points=len(prophet_data))
return prophet_data
except Exception as e:
logger.error("Error preparing enhanced training data",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise
async def _store_processing_metadata(self,
repos: Dict,
tenant_id: str,
product_name: str,
inventory_product_id: str,
processed_data: pd.DataFrame,
job_id: str = None):
"""Store data processing metadata using repository"""
try:
# Create processing metadata
metadata = {
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"data_points": len(processed_data),
"date_range": {
"start": processed_data['ds'].min().isoformat(),
@@ -167,7 +167,7 @@ class EnhancedBakeryDataProcessor:
# Log processing completion
if job_id:
await repos['training_log'].update_log_progress(
job_id, 25, f"data_prepared_{product_name}", "running"
job_id, 25, f"data_prepared_{inventory_product_id}", "running"
)
except Exception as e:
@@ -270,7 +270,7 @@ class EnhancedBakeryDataProcessor:
logger.warning("Date alignment failed, using original data", error=str(e))
return sales_data
async def _process_sales_data(self, sales_data: pd.DataFrame, product_name: str) -> pd.DataFrame:
async def _process_sales_data(self, sales_data: pd.DataFrame, inventory_product_id: str) -> pd.DataFrame:
"""Process and clean sales data with enhanced validation"""
sales_clean = sales_data.copy()
@@ -305,9 +305,9 @@ class EnhancedBakeryDataProcessor:
sales_clean = sales_clean.dropna(subset=['quantity'])
sales_clean = sales_clean[sales_clean['quantity'] >= 0] # No negative sales
# Filter for the specific product if product_name column exists
if 'product_name' in sales_clean.columns:
sales_clean = sales_clean[sales_clean['product_name'] == product_name]
# Filter for the specific product if inventory_product_id column exists
if 'inventory_product_id' in sales_clean.columns:
sales_clean = sales_clean[sales_clean['inventory_product_id'] == inventory_product_id]
# Remove duplicate dates (keep the one with highest quantity)
sales_clean = sales_clean.sort_values(['date', 'quantity'], ascending=[True, False])

View File

@@ -52,7 +52,7 @@ class BakeryProphetManager:
async def train_bakery_model(self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
df: pd.DataFrame,
job_id: str) -> Dict[str, Any]:
"""
@@ -60,10 +60,10 @@ class BakeryProphetManager:
Same interface as before - optimization happens automatically.
"""
try:
logger.info(f"Training optimized bakery model for {product_name}")
logger.info(f"Training optimized bakery model for {inventory_product_id}")
# Validate input data
await self._validate_training_data(df, product_name)
await self._validate_training_data(df, inventory_product_id)
# Prepare data for Prophet
prophet_data = await self._prepare_prophet_data(df)
@@ -72,8 +72,8 @@ class BakeryProphetManager:
regressor_columns = self._extract_regressor_columns(prophet_data)
# Automatically optimize hyperparameters (this is the new part)
logger.info(f"Optimizing hyperparameters for {product_name}...")
best_params = await self._optimize_hyperparameters(prophet_data, product_name, regressor_columns)
logger.info(f"Optimizing hyperparameters for {inventory_product_id}...")
best_params = await self._optimize_hyperparameters(prophet_data, inventory_product_id, regressor_columns)
# Create optimized Prophet model
model = self._create_optimized_prophet_model(best_params, regressor_columns)
@@ -92,7 +92,7 @@ class BakeryProphetManager:
# Store model and metrics - Generate proper UUID for model_id
model_id = str(uuid.uuid4())
model_path = await self._store_model(
tenant_id, product_name, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
tenant_id, inventory_product_id, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
)
# Return same format as before, but with optimization info
@@ -112,17 +112,17 @@ class BakeryProphetManager:
}
}
logger.info(f"Optimized model trained successfully for {product_name}. "
logger.info(f"Optimized model trained successfully for {inventory_product_id}. "
f"MAPE: {training_metrics.get('optimized_mape', 'N/A')}%")
return model_info
except Exception as e:
logger.error(f"Failed to train optimized bakery model for {product_name}: {str(e)}")
logger.error(f"Failed to train optimized bakery model for {inventory_product_id}: {str(e)}")
raise
async def _optimize_hyperparameters(self,
df: pd.DataFrame,
product_name: str,
inventory_product_id: str,
regressor_columns: List[str]) -> Dict[str, Any]:
"""
Automatically optimize Prophet hyperparameters using Bayesian optimization.
@@ -130,7 +130,7 @@ class BakeryProphetManager:
"""
# Determine product category automatically
product_category = self._classify_product(product_name, df)
product_category = self._classify_product(inventory_product_id, df)
# Set optimization parameters based on category
n_trials = {
@@ -140,7 +140,7 @@ class BakeryProphetManager:
'intermittent': 15 # Reduced from 25
}.get(product_category, 25)
logger.info(f"Product {product_name} classified as {product_category}, using {n_trials} trials")
logger.info(f"Product {inventory_product_id} classified as {product_category}, using {n_trials} trials")
# Check data quality and adjust strategy
total_sales = df['y'].sum()
@@ -148,12 +148,12 @@ class BakeryProphetManager:
mean_sales = df['y'].mean()
non_zero_days = len(df[df['y'] > 0])
logger.info(f"Data analysis for {product_name}: total_sales={total_sales:.1f}, "
logger.info(f"Data analysis for {inventory_product_id}: total_sales={total_sales:.1f}, "
f"zero_ratio={zero_ratio:.2f}, mean_sales={mean_sales:.2f}, non_zero_days={non_zero_days}")
# Adjust strategy based on data characteristics
if zero_ratio > 0.8 or non_zero_days < 30:
logger.warning(f"Very sparse data for {product_name}, using minimal optimization")
logger.warning(f"Very sparse data for {inventory_product_id}, using minimal optimization")
return {
'changepoint_prior_scale': 0.001,
'seasonality_prior_scale': 0.01,
@@ -166,7 +166,7 @@ class BakeryProphetManager:
'uncertainty_samples': 100 # ✅ FIX: Minimal uncertainty sampling for very sparse data
}
elif zero_ratio > 0.6:
logger.info(f"Moderate sparsity for {product_name}, using conservative optimization")
logger.info(f"Moderate sparsity for {inventory_product_id}, using conservative optimization")
return {
'changepoint_prior_scale': 0.01,
'seasonality_prior_scale': 0.1,
@@ -180,7 +180,7 @@ class BakeryProphetManager:
}
# Use unique seed for each product to avoid identical results
product_seed = hash(product_name) % 10000
product_seed = hash(str(inventory_product_id)) % 10000
def objective(trial):
try:
@@ -284,13 +284,13 @@ class BakeryProphetManager:
cv_scores.append(mape_like)
except Exception as fold_error:
logger.debug(f"Fold failed for {product_name} trial {trial.number}: {str(fold_error)}")
logger.debug(f"Fold failed for {inventory_product_id} trial {trial.number}: {str(fold_error)}")
continue
return np.mean(cv_scores) if len(cv_scores) > 0 else 100.0
except Exception as trial_error:
logger.debug(f"Trial {trial.number} failed for {product_name}: {str(trial_error)}")
logger.debug(f"Trial {trial.number} failed for {inventory_product_id}: {str(trial_error)}")
return 100.0
# Run optimization with product-specific seed
@@ -304,19 +304,19 @@ class BakeryProphetManager:
best_params = study.best_params
best_score = study.best_value
logger.info(f"Optimization completed for {product_name}. Best score: {best_score:.2f}%. "
logger.info(f"Optimization completed for {inventory_product_id}. Best score: {best_score:.2f}%. "
f"Parameters: {best_params}")
# ✅ FIX: Log uncertainty sampling configuration for debugging confidence intervals
uncertainty_samples = best_params.get('uncertainty_samples', 500)
logger.info(f"Prophet model will use {uncertainty_samples} uncertainty samples for {product_name} "
logger.info(f"Prophet model will use {uncertainty_samples} uncertainty samples for {inventory_product_id} "
f"(category: {product_category}, zero_ratio: {zero_ratio:.2f})")
return best_params
def _classify_product(self, product_name: str, sales_data: pd.DataFrame) -> str:
def _classify_product(self, inventory_product_id: str, sales_data: pd.DataFrame) -> str:
"""Automatically classify product for optimization strategy - improved for bakery data"""
product_lower = product_name.lower()
product_lower = str(inventory_product_id).lower()
# Calculate sales statistics
total_sales = sales_data['y'].sum()
@@ -324,7 +324,7 @@ class BakeryProphetManager:
zero_ratio = (sales_data['y'] == 0).sum() / len(sales_data)
non_zero_days = len(sales_data[sales_data['y'] > 0])
logger.info(f"Product classification for {product_name}: total_sales={total_sales:.1f}, "
logger.info(f"Product classification for {inventory_product_id}: total_sales={total_sales:.1f}, "
f"mean_sales={mean_sales:.2f}, zero_ratio={zero_ratio:.2f}, non_zero_days={non_zero_days}")
# Improved classification logic for bakery products
@@ -499,7 +499,7 @@ class BakeryProphetManager:
async def _store_model(self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
model: Prophet,
model_id: str,
training_data: pd.DataFrame,
@@ -520,7 +520,7 @@ class BakeryProphetManager:
metadata = {
"model_id": model_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"regressor_columns": regressor_columns,
"training_samples": len(training_data),
"data_period": {
@@ -539,7 +539,7 @@ class BakeryProphetManager:
json.dump(metadata, f, indent=2, default=str)
# Store in memory
model_key = f"{tenant_id}:{product_name}"
model_key = f"{tenant_id}:{inventory_product_id}"
self.models[model_key] = model
self.model_metadata[model_key] = metadata
@@ -547,13 +547,13 @@ class BakeryProphetManager:
try:
async with self.database_manager.get_session() as db_session:
# Deactivate previous models for this product
await self._deactivate_previous_models_with_session(db_session, tenant_id, product_name)
await self._deactivate_previous_models_with_session(db_session, tenant_id, inventory_product_id)
# Create new database record
db_model = TrainedModel(
id=model_id,
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
model_type="prophet_optimized",
job_id=model_id.split('_')[0], # Extract job_id from model_id
model_path=str(model_path),
@@ -587,23 +587,23 @@ class BakeryProphetManager:
logger.info(f"Optimized model stored at: {model_path}")
return str(model_path)
async def _deactivate_previous_models_with_session(self, db_session, tenant_id: str, product_name: str):
async def _deactivate_previous_models_with_session(self, db_session, tenant_id: str, inventory_product_id: str):
"""Deactivate previous models for the same product using provided session"""
try:
# ✅ FIX: Wrap SQL string with text() for SQLAlchemy 2.0
query = text("""
UPDATE trained_models
SET is_active = false, is_production = false
WHERE tenant_id = :tenant_id AND product_name = :product_name
WHERE tenant_id = :tenant_id AND inventory_product_id = :inventory_product_id
""")
await db_session.execute(query, {
"tenant_id": tenant_id,
"product_name": product_name
"inventory_product_id": inventory_product_id
})
# Note: Don't commit here, let the calling method handle the transaction
logger.info(f"Successfully deactivated previous models for {product_name}")
logger.info(f"Successfully deactivated previous models for {inventory_product_id}")
except Exception as e:
logger.error(f"Failed to deactivate previous models: {str(e)}")
@@ -630,14 +630,14 @@ class BakeryProphetManager:
logger.error(f"Failed to generate forecast: {str(e)}")
raise
async def _validate_training_data(self, df: pd.DataFrame, product_name: str):
async def _validate_training_data(self, df: pd.DataFrame, inventory_product_id: str):
"""Validate training data quality (unchanged)"""
if df.empty:
raise ValueError(f"No training data available for {product_name}")
raise ValueError(f"No training data available for {inventory_product_id}")
if len(df) < settings.MIN_TRAINING_DATA_DAYS:
raise ValueError(
f"Insufficient training data for {product_name}: "
f"Insufficient training data for {inventory_product_id}: "
f"{len(df)} days, minimum required: {settings.MIN_TRAINING_DATA_DAYS}"
)

View File

@@ -91,7 +91,7 @@ class EnhancedBakeryMLTrainer:
await self._validate_input_data(sales_df, tenant_id)
# Get unique products from the sales data
products = sales_df['product_name'].unique().tolist()
products = sales_df['inventory_product_id'].unique().tolist()
logger.info("Training enhanced models",
products_count=len(products),
products=products)
@@ -183,17 +183,17 @@ class EnhancedBakeryMLTrainer:
"""Process data for all products using enhanced processor with repository tracking"""
processed_data = {}
for product_name in products:
for inventory_product_id in products:
try:
logger.info("Processing data for product using enhanced processor",
product_name=product_name)
inventory_product_id=inventory_product_id)
# Filter sales data for this product
product_sales = sales_df[sales_df['product_name'] == product_name].copy()
product_sales = sales_df[sales_df['inventory_product_id'] == inventory_product_id].copy()
if product_sales.empty:
logger.warning("No sales data found for product",
product_name=product_name)
inventory_product_id=inventory_product_id)
continue
# Use enhanced data processor with repository tracking
@@ -201,19 +201,19 @@ class EnhancedBakeryMLTrainer:
sales_data=product_sales,
weather_data=weather_df,
traffic_data=traffic_df,
product_name=product_name,
inventory_product_id=inventory_product_id,
tenant_id=tenant_id,
job_id=job_id
)
processed_data[product_name] = processed_product_data
processed_data[inventory_product_id] = processed_product_data
logger.info("Enhanced processing completed",
product_name=product_name,
inventory_product_id=inventory_product_id,
data_points=len(processed_product_data))
except Exception as e:
logger.error("Failed to process data using enhanced processor",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
continue
@@ -231,15 +231,15 @@ class EnhancedBakeryMLTrainer:
base_progress = 45
max_progress = 85
for product_name, product_data in processed_data.items():
for inventory_product_id, product_data in processed_data.items():
product_start_time = time.time()
try:
logger.info("Training enhanced model",
product_name=product_name)
inventory_product_id=inventory_product_id)
# Check if we have enough data
if len(product_data) < settings.MIN_TRAINING_DATA_DAYS:
training_results[product_name] = {
training_results[inventory_product_id] = {
'status': 'skipped',
'reason': 'insufficient_data',
'data_points': len(product_data),
@@ -247,7 +247,7 @@ class EnhancedBakeryMLTrainer:
'message': f'Need at least {settings.MIN_TRAINING_DATA_DAYS} data points, got {len(product_data)}'
}
logger.warning("Skipping product due to insufficient data",
product_name=product_name,
inventory_product_id=inventory_product_id,
data_points=len(product_data),
min_required=settings.MIN_TRAINING_DATA_DAYS)
continue
@@ -255,24 +255,24 @@ class EnhancedBakeryMLTrainer:
# Train the model using Prophet manager
model_info = await self.prophet_manager.train_bakery_model(
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
df=product_data,
job_id=job_id
)
# Store model record using repository
model_record = await self._create_model_record(
repos, tenant_id, product_name, model_info, job_id, product_data
repos, tenant_id, inventory_product_id, model_info, job_id, product_data
)
# Create performance metrics record
if model_info.get('training_metrics'):
await self._create_performance_metrics(
repos, model_record.id if model_record else None,
tenant_id, product_name, model_info['training_metrics']
tenant_id, inventory_product_id, model_info['training_metrics']
)
training_results[product_name] = {
training_results[inventory_product_id] = {
'status': 'success',
'model_info': model_info,
'model_record_id': model_record.id if model_record else None,
@@ -282,7 +282,7 @@ class EnhancedBakeryMLTrainer:
}
logger.info("Successfully trained enhanced model",
product_name=product_name,
inventory_product_id=inventory_product_id,
model_record_id=model_record.id if model_record else None)
completed_products = i + 1
@@ -295,15 +295,15 @@ class EnhancedBakeryMLTrainer:
await self.status_publisher.progress_update(
progress=progress,
step="model_training",
current_product=product_name,
step_details=f"Enhanced training completed for {product_name}"
current_product=inventory_product_id,
step_details=f"Enhanced training completed for {inventory_product_id}"
)
except Exception as e:
logger.error("Failed to train enhanced model",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
training_results[product_name] = {
training_results[inventory_product_id] = {
'status': 'error',
'error_message': str(e),
'data_points': len(product_data) if product_data is not None else 0,
@@ -320,8 +320,8 @@ class EnhancedBakeryMLTrainer:
await self.status_publisher.progress_update(
progress=progress,
step="model_training",
current_product=product_name,
step_details=f"Enhanced training failed for {product_name}: {str(e)}"
current_product=inventory_product_id,
step_details=f"Enhanced training failed for {inventory_product_id}: {str(e)}"
)
return training_results
@@ -329,7 +329,7 @@ class EnhancedBakeryMLTrainer:
async def _create_model_record(self,
repos: Dict,
tenant_id: str,
product_name: str,
inventory_product_id: str,
model_info: Dict,
job_id: str,
processed_data: pd.DataFrame):
@@ -337,7 +337,7 @@ class EnhancedBakeryMLTrainer:
try:
model_data = {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"job_id": job_id,
"model_type": "enhanced_prophet",
"model_path": model_info.get("model_path"),
@@ -357,7 +357,7 @@ class EnhancedBakeryMLTrainer:
model_record = await repos['model'].create_model(model_data)
logger.info("Created enhanced model record",
product_name=product_name,
inventory_product_id=inventory_product_id,
model_id=model_record.id)
# Create artifacts for model files
@@ -374,7 +374,7 @@ class EnhancedBakeryMLTrainer:
except Exception as e:
logger.error("Failed to create enhanced model record",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
return None
@@ -382,14 +382,14 @@ class EnhancedBakeryMLTrainer:
repos: Dict,
model_id: str,
tenant_id: str,
product_name: str,
inventory_product_id: str,
metrics: Dict):
"""Create performance metrics record using repository"""
try:
metric_data = {
"model_id": str(model_id),
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"mae": metrics.get("mae"),
"mse": metrics.get("mse"),
"rmse": metrics.get("rmse"),
@@ -401,12 +401,12 @@ class EnhancedBakeryMLTrainer:
await repos['performance'].create_performance_metric(metric_data)
logger.info("Created enhanced performance metrics",
product_name=product_name,
inventory_product_id=inventory_product_id,
model_id=model_id)
except Exception as e:
logger.error("Failed to create enhanced performance metrics",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
async def _calculate_enhanced_training_summary(self,
@@ -532,7 +532,7 @@ class EnhancedBakeryMLTrainer:
async def evaluate_model_performance_enhanced(self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
model_path: str,
test_dataset: TrainingDataSet) -> Dict[str, Any]:
"""
@@ -553,17 +553,17 @@ class EnhancedBakeryMLTrainer:
test_traffic_df = pd.DataFrame(test_dataset.traffic_data)
# Filter for specific product
product_test_sales = test_sales_df[test_sales_df['product_name'] == product_name].copy()
product_test_sales = test_sales_df[test_sales_df['inventory_product_id'] == inventory_product_id].copy()
if product_test_sales.empty:
raise ValueError(f"No test data found for product: {product_name}")
raise ValueError(f"No test data found for product: {inventory_product_id}")
# Process test data using enhanced processor
processed_test_data = await self.enhanced_data_processor.prepare_training_data(
sales_data=product_test_sales,
weather_data=test_weather_df,
traffic_data=test_traffic_df,
product_name=product_name,
inventory_product_id=inventory_product_id,
tenant_id=tenant_id
)
@@ -608,16 +608,16 @@ class EnhancedBakeryMLTrainer:
metrics["mape"] = 100.0
# Store evaluation metrics in repository
model_records = await repos['model'].get_models_by_product(tenant_id, product_name)
model_records = await repos['model'].get_models_by_product(tenant_id, inventory_product_id)
if model_records:
latest_model = max(model_records, key=lambda x: x.created_at)
await self._create_performance_metrics(
repos, latest_model.id, tenant_id, product_name, metrics
repos, latest_model.id, tenant_id, inventory_product_id, metrics
)
result = {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"enhanced_evaluation_metrics": metrics,
"test_samples": len(processed_test_data),
"prediction_samples": len(forecast),

View File

@@ -46,7 +46,7 @@ class ModelPerformanceMetric(Base):
id = Column(Integer, primary_key=True, index=True)
model_id = Column(String(255), index=True, nullable=False)
tenant_id = Column(UUID(as_uuid=True), nullable=False, index=True)
product_name = Column(String(255), index=True, nullable=False)
inventory_product_id = Column(UUID(as_uuid=True), index=True, nullable=False)
# Performance metrics
mae = Column(Float, nullable=True) # Mean Absolute Error
@@ -128,7 +128,7 @@ class TrainedModel(Base):
# Primary identification - Updated to use UUID properly
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
tenant_id = Column(UUID(as_uuid=True), nullable=False, index=True)
product_name = Column(String, nullable=False, index=True)
inventory_product_id = Column(UUID(as_uuid=True), nullable=False, index=True)
# Model information
model_type = Column(String, default="prophet_optimized")
@@ -174,7 +174,7 @@ class TrainedModel(Base):
"id": str(self.id),
"model_id": str(self.id),
"tenant_id": str(self.tenant_id),
"product_name": self.product_name,
"inventory_product_id": str(self.inventory_product_id),
"model_type": self.model_type,
"model_version": self.model_version,
"model_path": self.model_path,

View File

@@ -29,7 +29,7 @@ class ModelRepository(TrainingBaseRepository):
# Validate model data
validation_result = self._validate_training_data(
model_data,
["tenant_id", "product_name", "model_path", "job_id"]
["tenant_id", "inventory_product_id", "model_path", "job_id"]
)
if not validation_result["is_valid"]:
@@ -38,7 +38,7 @@ class ModelRepository(TrainingBaseRepository):
# Check for duplicate active models for same tenant+product
existing_model = await self.get_active_model_for_product(
model_data["tenant_id"],
model_data["product_name"]
model_data["inventory_product_id"]
)
# If there's an existing active model, we may want to deactivate it
@@ -46,7 +46,7 @@ class ModelRepository(TrainingBaseRepository):
logger.info("Deactivating previous production model",
previous_model_id=existing_model.id,
tenant_id=model_data["tenant_id"],
product_name=model_data["product_name"])
inventory_product_id=model_data["inventory_product_id"])
await self.update(existing_model.id, {"is_production": False})
# Create new model
@@ -55,7 +55,7 @@ class ModelRepository(TrainingBaseRepository):
logger.info("Trained model created successfully",
model_id=model.id,
tenant_id=model.tenant_id,
product_name=model.product_name,
inventory_product_id=str(model.inventory_product_id),
model_type=model.model_type)
return model
@@ -65,21 +65,21 @@ class ModelRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to create trained model",
tenant_id=model_data.get("tenant_id"),
product_name=model_data.get("product_name"),
inventory_product_id=model_data.get("inventory_product_id"),
error=str(e))
raise DatabaseError(f"Failed to create model: {str(e)}")
async def get_model_by_tenant_and_product(
self,
tenant_id: str,
product_name: str
inventory_product_id: str
) -> List[TrainedModel]:
"""Get all models for a tenant and product"""
try:
return await self.get_multi(
filters={
"tenant_id": tenant_id,
"product_name": product_name
"inventory_product_id": inventory_product_id
},
order_by="created_at",
order_desc=True
@@ -87,21 +87,21 @@ class ModelRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to get models by tenant and product",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise DatabaseError(f"Failed to get models: {str(e)}")
async def get_active_model_for_product(
self,
tenant_id: str,
product_name: str
inventory_product_id: str
) -> Optional[TrainedModel]:
"""Get the active production model for a product"""
try:
models = await self.get_multi(
filters={
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"is_active": True,
"is_production": True
},
@@ -113,7 +113,7 @@ class ModelRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to get active model for product",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise DatabaseError(f"Failed to get active model: {str(e)}")
@@ -137,7 +137,7 @@ class ModelRepository(TrainingBaseRepository):
# Deactivate other production models for the same tenant+product
await self._deactivate_other_production_models(
model.tenant_id,
model.product_name,
str(model.inventory_product_id),
model_id
)
@@ -150,7 +150,7 @@ class ModelRepository(TrainingBaseRepository):
logger.info("Model promoted to production",
model_id=model_id,
tenant_id=model.tenant_id,
product_name=model.product_name)
inventory_product_id=str(model.inventory_product_id))
return updated_model
@@ -223,16 +223,16 @@ class ModelRepository(TrainingBaseRepository):
# Get models by product using raw query
product_query = text("""
SELECT product_name, COUNT(*) as count
SELECT inventory_product_id, COUNT(*) as count
FROM trained_models
WHERE tenant_id = :tenant_id
AND is_active = true
GROUP BY product_name
GROUP BY inventory_product_id
ORDER BY count DESC
""")
result = await self.session.execute(product_query, {"tenant_id": tenant_id})
product_stats = {row.product_name: row.count for row in result.fetchall()}
product_stats = {row.inventory_product_id: row.count for row in result.fetchall()}
# Recent activity (models created in last 30 days)
thirty_days_ago = datetime.utcnow() - timedelta(days=30)
@@ -274,7 +274,7 @@ class ModelRepository(TrainingBaseRepository):
async def _deactivate_other_production_models(
self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
exclude_model_id: str
) -> int:
"""Deactivate other production models for the same tenant+product"""
@@ -283,14 +283,14 @@ class ModelRepository(TrainingBaseRepository):
UPDATE trained_models
SET is_production = false
WHERE tenant_id = :tenant_id
AND product_name = :product_name
AND inventory_product_id = :inventory_product_id
AND id != :exclude_model_id
AND is_production = true
""")
result = await self.session.execute(query, {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"exclude_model_id": exclude_model_id
})
@@ -299,7 +299,7 @@ class ModelRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to deactivate other production models",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise DatabaseError(f"Failed to deactivate models: {str(e)}")
@@ -313,7 +313,7 @@ class ModelRepository(TrainingBaseRepository):
return {
"model_id": model.id,
"tenant_id": model.tenant_id,
"product_name": model.product_name,
"inventory_product_id": str(model.inventory_product_id),
"model_type": model.model_type,
"metrics": {
"mape": model.mape,

View File

@@ -29,7 +29,7 @@ class PerformanceRepository(TrainingBaseRepository):
# Validate metric data
validation_result = self._validate_training_data(
metric_data,
["model_id", "tenant_id", "product_name"]
["model_id", "tenant_id", "inventory_product_id"]
)
if not validation_result["is_valid"]:
@@ -45,7 +45,7 @@ class PerformanceRepository(TrainingBaseRepository):
logger.info("Performance metric created",
model_id=metric.model_id,
tenant_id=metric.tenant_id,
product_name=metric.product_name)
inventory_product_id=str(metric.inventory_product_id))
return metric
@@ -97,7 +97,7 @@ class PerformanceRepository(TrainingBaseRepository):
async def get_metrics_by_tenant_and_product(
self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
skip: int = 0,
limit: int = 100
) -> List[ModelPerformanceMetric]:
@@ -106,7 +106,7 @@ class PerformanceRepository(TrainingBaseRepository):
return await self.get_multi(
filters={
"tenant_id": tenant_id,
"product_name": product_name
"inventory_product_id": inventory_product_id
},
skip=skip,
limit=limit,
@@ -116,7 +116,7 @@ class PerformanceRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to get metrics by tenant and product",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise DatabaseError(f"Failed to get metrics: {str(e)}")
@@ -172,7 +172,7 @@ class PerformanceRepository(TrainingBaseRepository):
async def get_performance_trends(
self,
tenant_id: str,
product_name: str = None,
inventory_product_id: str = None,
days: int = 30
) -> Dict[str, Any]:
"""Get performance trends for analysis"""
@@ -184,13 +184,13 @@ class PerformanceRepository(TrainingBaseRepository):
conditions = ["tenant_id = :tenant_id", "measured_at >= :start_date"]
params = {"tenant_id": tenant_id, "start_date": start_date}
if product_name:
conditions.append("product_name = :product_name")
params["product_name"] = product_name
if inventory_product_id:
conditions.append("inventory_product_id = :inventory_product_id")
params["inventory_product_id"] = inventory_product_id
query_text = f"""
SELECT
product_name,
inventory_product_id,
AVG(mae) as avg_mae,
AVG(mse) as avg_mse,
AVG(rmse) as avg_rmse,
@@ -202,7 +202,7 @@ class PerformanceRepository(TrainingBaseRepository):
MAX(measured_at) as last_measurement
FROM model_performance_metrics
WHERE {' AND '.join(conditions)}
GROUP BY product_name
GROUP BY inventory_product_id
ORDER BY avg_accuracy DESC
"""
@@ -211,7 +211,7 @@ class PerformanceRepository(TrainingBaseRepository):
trends = []
for row in result.fetchall():
trends.append({
"product_name": row.product_name,
"inventory_product_id": row.inventory_product_id,
"metrics": {
"avg_mae": float(row.avg_mae) if row.avg_mae else None,
"avg_mse": float(row.avg_mse) if row.avg_mse else None,
@@ -230,7 +230,7 @@ class PerformanceRepository(TrainingBaseRepository):
return {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"trends": trends,
"period_days": days,
"total_products": len(trends)
@@ -239,11 +239,11 @@ class PerformanceRepository(TrainingBaseRepository):
except Exception as e:
logger.error("Failed to get performance trends",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
return {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"trends": [],
"period_days": days,
"total_products": 0
@@ -268,16 +268,16 @@ class PerformanceRepository(TrainingBaseRepository):
order_direction = "DESC" if order_desc else "ASC"
query_text = f"""
SELECT DISTINCT ON (product_name, model_id)
SELECT DISTINCT ON (inventory_product_id, model_id)
model_id,
product_name,
inventory_product_id,
{metric_type},
measured_at,
evaluation_samples
FROM model_performance_metrics
WHERE tenant_id = :tenant_id
AND {metric_type} IS NOT NULL
ORDER BY product_name, model_id, measured_at DESC, {metric_type} {order_direction}
ORDER BY inventory_product_id, model_id, measured_at DESC, {metric_type} {order_direction}
LIMIT :limit
"""
@@ -290,7 +290,7 @@ class PerformanceRepository(TrainingBaseRepository):
for row in result.fetchall():
best_models.append({
"model_id": row.model_id,
"product_name": row.product_name,
"inventory_product_id": row.inventory_product_id,
"metric_value": float(getattr(row, metric_type)),
"metric_type": metric_type,
"measured_at": row.measured_at.isoformat() if row.measured_at else None,
@@ -319,12 +319,12 @@ class PerformanceRepository(TrainingBaseRepository):
# Get metrics by product using raw query
product_query = text("""
SELECT
product_name,
inventory_product_id,
COUNT(*) as metric_count,
AVG(accuracy_percentage) as avg_accuracy
FROM model_performance_metrics
WHERE tenant_id = :tenant_id
GROUP BY product_name
GROUP BY inventory_product_id
ORDER BY avg_accuracy DESC
""")
@@ -332,7 +332,7 @@ class PerformanceRepository(TrainingBaseRepository):
product_stats = {}
for row in result.fetchall():
product_stats[row.product_name] = {
product_stats[row.inventory_product_id] = {
"metric_count": row.metric_count,
"avg_accuracy": float(row.avg_accuracy) if row.avg_accuracy else None
}
@@ -383,7 +383,7 @@ class PerformanceRepository(TrainingBaseRepository):
query_text = f"""
SELECT
model_id,
product_name,
inventory_product_id,
AVG({metric_type}) as avg_metric,
MIN({metric_type}) as min_metric,
MAX({metric_type}) as max_metric,
@@ -392,7 +392,7 @@ class PerformanceRepository(TrainingBaseRepository):
FROM model_performance_metrics
WHERE model_id IN ('{model_ids_str}')
AND {metric_type} IS NOT NULL
GROUP BY model_id, product_name
GROUP BY model_id, inventory_product_id
ORDER BY avg_metric DESC
"""
@@ -402,7 +402,7 @@ class PerformanceRepository(TrainingBaseRepository):
for row in result.fetchall():
comparisons.append({
"model_id": row.model_id,
"product_name": row.product_name,
"inventory_product_id": row.inventory_product_id,
"avg_metric": float(row.avg_metric),
"min_metric": float(row.min_metric),
"max_metric": float(row.max_metric),

View File

@@ -54,7 +54,7 @@ class DataSummary(BaseModel):
class ProductTrainingResult(BaseModel):
"""Schema for individual product training results"""
product_name: str = Field(..., description="Product name")
inventory_product_id: UUID = Field(..., description="Inventory product UUID")
status: str = Field(..., description="Training status for this product")
model_id: Optional[str] = Field(None, description="Trained model identifier")
data_points: int = Field(..., description="Number of data points used for training")
@@ -188,7 +188,7 @@ class ModelInfo(BaseModel):
class ProductTrainingResult(BaseModel):
"""Schema for individual product training result"""
product_name: str = Field(..., description="Product name")
inventory_product_id: UUID = Field(..., description="Inventory product UUID")
status: str = Field(..., description="Training status for this product")
model_info: Optional[ModelInfo] = Field(None, description="Model information if successful")
data_points: int = Field(..., description="Number of data points used")
@@ -281,7 +281,7 @@ class TrainedModelResponse(BaseModel):
"""Response schema for trained model information"""
model_id: str = Field(..., description="Unique model identifier")
tenant_id: str = Field(..., description="Tenant identifier")
product_name: str = Field(..., description="Product name")
inventory_product_id: UUID = Field(..., description="Inventory product UUID")
model_type: str = Field(..., description="Type of ML model")
model_path: str = Field(..., description="Path to stored model")
version: int = Field(..., description="Model version")

View File

@@ -262,7 +262,7 @@ async def publish_job_cancelled(job_id: str, tenant_id: str, reason: str = "User
# PRODUCT-LEVEL TRAINING EVENTS
# =========================================
async def publish_product_training_started(job_id: str, tenant_id: str, product_name: str) -> bool:
async def publish_product_training_started(job_id: str, tenant_id: str, inventory_product_id: str) -> bool:
"""Publish single product training started event"""
return await training_publisher.publish_event(
exchange_name="training.events",
@@ -274,7 +274,7 @@ async def publish_product_training_started(job_id: str, tenant_id: str, product_
"data": {
"job_id": job_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"started_at": datetime.now().isoformat()
}
}
@@ -283,7 +283,7 @@ async def publish_product_training_started(job_id: str, tenant_id: str, product_
async def publish_product_training_completed(
job_id: str,
tenant_id: str,
product_name: str,
inventory_product_id: str,
model_id: str,
metrics: Optional[Dict[str, float]] = None
) -> bool:
@@ -298,7 +298,7 @@ async def publish_product_training_completed(
"data": {
"job_id": job_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"model_id": model_id,
"metrics": metrics or {},
"completed_at": datetime.now().isoformat()
@@ -309,7 +309,7 @@ async def publish_product_training_completed(
async def publish_product_training_failed(
job_id: str,
tenant_id: str,
product_name: str,
inventory_product_id: str,
error: str
) -> bool:
"""Publish single product training failed event"""
@@ -323,7 +323,7 @@ async def publish_product_training_failed(
"data": {
"job_id": job_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"error": error,
"failed_at": datetime.now().isoformat()
}
@@ -334,7 +334,7 @@ async def publish_product_training_failed(
# MODEL LIFECYCLE EVENTS
# =========================================
async def publish_model_trained(model_id: str, tenant_id: str, product_name: str, metrics: Dict[str, float]) -> bool:
async def publish_model_trained(model_id: str, tenant_id: str, inventory_product_id: str, metrics: Dict[str, float]) -> bool:
"""Publish model trained event with safe metric serialization"""
# Clean metrics to ensure JSON serialization
@@ -347,7 +347,7 @@ async def publish_model_trained(model_id: str, tenant_id: str, product_name: str
"data": {
"model_id": model_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"training_metrics": clean_metrics, # Now safe for JSON
"trained_at": datetime.now().isoformat()
}
@@ -360,7 +360,7 @@ async def publish_model_trained(model_id: str, tenant_id: str, product_name: str
)
async def publish_model_validated(model_id: str, tenant_id: str, product_name: str, validation_results: Dict[str, Any]) -> bool:
async def publish_model_validated(model_id: str, tenant_id: str, inventory_product_id: str, validation_results: Dict[str, Any]) -> bool:
"""Publish model validation event"""
return await training_publisher.publish_event(
exchange_name="training.events",
@@ -372,14 +372,14 @@ async def publish_model_validated(model_id: str, tenant_id: str, product_name: s
"data": {
"model_id": model_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"validation_results": validation_results,
"validated_at": datetime.now().isoformat()
}
}
)
async def publish_model_saved(model_id: str, tenant_id: str, product_name: str, model_path: str) -> bool:
async def publish_model_saved(model_id: str, tenant_id: str, inventory_product_id: str, model_path: str) -> bool:
"""Publish model saved event"""
return await training_publisher.publish_event(
exchange_name="training.events",
@@ -391,7 +391,7 @@ async def publish_model_saved(model_id: str, tenant_id: str, product_name: str,
"data": {
"model_id": model_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"model_path": model_path,
"saved_at": datetime.now().isoformat()
}
@@ -571,7 +571,7 @@ class TrainingStatusPublisher:
return 0
async def product_completed(self, product_name: str, model_id: str, metrics: Optional[Dict] = None):
async def product_completed(self, inventory_product_id: str, model_id: str, metrics: Optional[Dict] = None):
"""Mark a product as completed and update progress"""
self.products_completed += 1
@@ -579,7 +579,7 @@ class TrainingStatusPublisher:
clean_metrics = safe_json_serialize(metrics) if metrics else None
await publish_product_training_completed(
self.job_id, self.tenant_id, product_name, model_id, clean_metrics
self.job_id, self.tenant_id, inventory_product_id, model_id, clean_metrics
)
# Update overall progress
@@ -587,7 +587,7 @@ class TrainingStatusPublisher:
progress = int((self.products_completed / self.products_total) * 90) # Save 10% for final steps
await self.progress_update(
progress=progress,
step=f"Completed training for {product_name}",
step=f"Completed training for {inventory_product_id}",
current_product=None
)

View File

@@ -234,7 +234,7 @@ class TrainingDataOrchestrator:
def _validate_sales_record(self, record: Dict[str, Any]) -> bool:
"""Validate individual sales record"""
required_fields = ['date', 'product_name']
required_fields = ['date', 'inventory_product_id']
quantity_fields = ['quantity', 'quantity_sold', 'sales', 'units_sold']
# Check required fields
@@ -755,8 +755,8 @@ class TrainingDataOrchestrator:
# Check data consistency
unique_products = set()
for record in dataset.sales_data:
if 'product_name' in record:
unique_products.add(record['product_name'])
if 'inventory_product_id' in record:
unique_products.add(record['inventory_product_id'])
if len(unique_products) == 0:
validation_results["errors"].append("No product names found in sales data")
@@ -822,7 +822,7 @@ class TrainingDataOrchestrator:
"required": True,
"priority": "high",
"expected_records": "variable",
"data_points": ["date", "product_name", "quantity"],
"data_points": ["date", "inventory_product_id", "quantity"],
"validation": "required_fields_check"
}

View File

@@ -223,7 +223,7 @@ class EnhancedTrainingService:
"training_results": training_results,
"stored_models": [{
"id": str(model.id),
"product_name": model.product_name,
"inventory_product_id": str(model.inventory_product_id),
"model_type": model.model_type,
"model_path": model.model_path,
"is_active": model.is_active,
@@ -292,11 +292,11 @@ class EnhancedTrainingService:
models_trained_type=type(models_trained).__name__,
models_trained_keys=list(models_trained.keys()) if isinstance(models_trained, dict) else "not_dict")
for product_name, model_result in models_trained.items():
for inventory_product_id, model_result in models_trained.items():
# Defensive check: ensure model_result is a dictionary
if not isinstance(model_result, dict):
logger.warning("Skipping invalid model_result for product",
product_name=product_name,
inventory_product_id=inventory_product_id,
model_result_type=type(model_result).__name__,
model_result_value=str(model_result)[:100])
continue
@@ -306,12 +306,12 @@ class EnhancedTrainingService:
metrics = model_result.get("metrics", {})
if not isinstance(metrics, dict):
logger.warning("Invalid metrics object, using empty dict",
product_name=product_name,
inventory_product_id=inventory_product_id,
metrics_type=type(metrics).__name__)
metrics = {}
model_data = {
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"job_id": job_id,
"model_type": "prophet_optimized",
"model_path": model_result.get("model_path"),
@@ -371,14 +371,14 @@ class EnhancedTrainingService:
"""Create performance metrics for stored models"""
try:
for model in stored_models:
model_result = training_results.get("models_trained", {}).get(model.product_name)
model_result = training_results.get("models_trained", {}).get(str(model.inventory_product_id))
if model_result and model_result.get("metrics"):
metrics = model_result["metrics"]
metric_data = {
"model_id": str(model.id),
"tenant_id": tenant_id,
"product_name": model.product_name,
"inventory_product_id": str(model.inventory_product_id),
"mae": metrics.get("mae"),
"mse": metrics.get("mse"),
"rmse": metrics.get("rmse"),
@@ -556,14 +556,14 @@ class EnhancedTrainingService:
async def start_single_product_training(self,
tenant_id: str,
product_name: str,
inventory_product_id: str,
job_id: str,
bakery_location: tuple = (40.4168, -3.7038)) -> Dict[str, Any]:
"""Start enhanced single product training using repository pattern"""
try:
logger.info("Starting enhanced single product training",
tenant_id=tenant_id,
product_name=product_name,
inventory_product_id=inventory_product_id,
job_id=job_id)
# This would use the data client to fetch data for the specific product
@@ -573,7 +573,7 @@ class EnhancedTrainingService:
return {
"job_id": job_id,
"tenant_id": tenant_id,
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"status": "completed",
"message": "Enhanced single product training completed successfully",
"created_at": datetime.now(),
@@ -582,9 +582,9 @@ class EnhancedTrainingService:
"successful_trainings": 1,
"failed_trainings": 0,
"products": [{
"product_name": product_name,
"inventory_product_id": inventory_product_id,
"status": "completed",
"model_id": f"model_{product_name}_{job_id[:8]}",
"model_id": f"model_{inventory_product_id}_{job_id[:8]}",
"data_points": 100,
"metrics": {"mape": 15.5, "mae": 2.3, "rmse": 3.1, "r2_score": 0.85}
}],
@@ -597,7 +597,7 @@ class EnhancedTrainingService:
except Exception as e:
logger.error("Enhanced single product training failed",
product_name=product_name,
inventory_product_id=inventory_product_id,
error=str(e))
raise
@@ -611,7 +611,7 @@ class EnhancedTrainingService:
products = []
for model in stored_models:
products.append({
"product_name": model.get("product_name"),
"inventory_product_id": model.get("inventory_product_id"),
"status": "completed",
"model_id": model.get("id"),
"data_points": model.get("training_samples", 0),