Files
bakery-ia/services/forecasting/app/api/internal_demo.py

428 lines
16 KiB
Python
Raw Normal View History

"""
Internal Demo Cloning API for Forecasting Service
Service-to-service endpoint for cloning forecast data
"""
from fastapi import APIRouter, Depends, HTTPException, Header
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select
import structlog
import uuid
from datetime import datetime, timezone, timedelta
from typing import Optional
import os
import sys
from pathlib import Path
2025-12-13 23:57:54 +01:00
import json
sys.path.insert(0, str(Path(__file__).parent.parent.parent.parent))
from shared.utils.demo_dates import adjust_date_for_demo, BASE_REFERENCE_DATE
from app.core.database import get_db
from app.models.forecasts import Forecast, PredictionBatch
logger = structlog.get_logger()
2025-12-13 23:57:54 +01:00
router = APIRouter()
# Base demo tenant IDs
2025-11-30 09:12:40 +01:00
DEMO_TENANT_PROFESSIONAL = "a1b2c3d4-e5f6-47a8-b9c0-d1e2f3a4b5c6"
def verify_internal_api_key(x_internal_api_key: Optional[str] = Header(None)):
"""Verify internal API key for service-to-service communication"""
2025-11-30 09:12:40 +01:00
from app.core.config import settings
if x_internal_api_key != settings.INTERNAL_API_KEY:
logger.warning("Unauthorized internal API access attempted")
raise HTTPException(status_code=403, detail="Invalid internal API key")
return True
2025-12-13 23:57:54 +01:00
@router.post("/internal/demo/clone")
async def clone_demo_data(
base_tenant_id: str,
virtual_tenant_id: str,
demo_account_type: str,
session_id: Optional[str] = None,
session_created_at: Optional[str] = None,
db: AsyncSession = Depends(get_db),
_: bool = Depends(verify_internal_api_key)
):
"""
Clone forecasting service data for a virtual demo tenant
2025-12-13 23:57:54 +01:00
This endpoint creates fresh demo data by:
1. Loading seed data from JSON files
2. Applying XOR-based ID transformation
3. Adjusting dates relative to session creation time
4. Creating records in the virtual tenant
Args:
2025-12-13 23:57:54 +01:00
base_tenant_id: Template tenant UUID (for reference)
virtual_tenant_id: Target virtual tenant UUID
demo_account_type: Type of demo account
session_id: Originating session ID for tracing
2025-12-13 23:57:54 +01:00
session_created_at: Session creation timestamp for date adjustment
db: Database session
Returns:
2025-12-13 23:57:54 +01:00
Dictionary with cloning results
Raises:
HTTPException: On validation or cloning errors
"""
start_time = datetime.now(timezone.utc)
2025-12-13 23:57:54 +01:00
try:
# Validate UUIDs
virtual_uuid = uuid.UUID(virtual_tenant_id)
# Parse session creation time for date adjustment
if session_created_at:
try:
session_time = datetime.fromisoformat(session_created_at.replace('Z', '+00:00'))
except (ValueError, AttributeError):
session_time = start_time
else:
session_time = start_time
2025-12-13 23:57:54 +01:00
logger.info(
"Starting forecasting data cloning with date adjustment",
base_tenant_id=base_tenant_id,
virtual_tenant_id=str(virtual_uuid),
demo_account_type=demo_account_type,
session_id=session_id,
session_time=session_time.isoformat()
)
# Load seed data using shared utility
try:
2025-12-13 23:57:54 +01:00
from shared.utils.seed_data_paths import get_seed_data_path
if demo_account_type == "enterprise":
profile = "enterprise"
else:
profile = "professional"
json_file = get_seed_data_path(profile, "10-forecasting.json")
except ImportError:
# Fallback to original path
seed_data_dir = Path(__file__).parent.parent.parent.parent / "shared" / "demo" / "fixtures"
if demo_account_type == "enterprise":
json_file = seed_data_dir / "enterprise" / "parent" / "10-forecasting.json"
else:
json_file = seed_data_dir / "professional" / "10-forecasting.json"
if not json_file.exists():
raise HTTPException(
status_code=404,
detail=f"Seed data file not found: {json_file}"
)
2025-12-13 23:57:54 +01:00
# Load JSON data
with open(json_file, 'r', encoding='utf-8') as f:
seed_data = json.load(f)
# Check if data already exists for this virtual tenant (idempotency)
existing_check = await db.execute(
select(Forecast).where(Forecast.tenant_id == virtual_uuid).limit(1)
)
existing_forecast = existing_check.scalar_one_or_none()
if existing_forecast:
logger.warning(
"Demo data already exists, skipping clone",
virtual_tenant_id=str(virtual_uuid)
)
return {
"status": "skipped",
"reason": "Data already exists",
"records_cloned": 0
}
# Track cloning statistics
stats = {
"forecasts": 0,
"prediction_batches": 0
}
2025-12-13 23:57:54 +01:00
# Transform and insert forecasts
for forecast_data in seed_data.get('forecasts', []):
# Transform ID using XOR
from shared.utils.demo_id_transformer import transform_id
try:
forecast_uuid = uuid.UUID(forecast_data['id'])
tenant_uuid = uuid.UUID(virtual_tenant_id)
transformed_id = transform_id(forecast_data['id'], tenant_uuid)
except ValueError as e:
logger.error("Failed to parse UUIDs for ID transformation",
forecast_id=forecast_data['id'],
virtual_tenant_id=virtual_tenant_id,
error=str(e))
raise HTTPException(
status_code=400,
detail=f"Invalid UUID format in forecast data: {str(e)}"
)
# Transform dates
for date_field in ['forecast_date', 'created_at']:
if date_field in forecast_data:
try:
date_value = forecast_data[date_field]
if isinstance(date_value, str):
original_date = datetime.fromisoformat(date_value)
elif hasattr(date_value, 'isoformat'):
original_date = date_value
else:
logger.warning("Skipping invalid date format",
date_field=date_field,
date_value=date_value)
continue
adjusted_forecast_date = adjust_date_for_demo(
original_date,
session_time,
BASE_REFERENCE_DATE
)
forecast_data[date_field] = adjusted_forecast_date
except (ValueError, AttributeError) as e:
logger.warning("Failed to parse date, skipping",
date_field=date_field,
date_value=forecast_data[date_field],
error=str(e))
forecast_data.pop(date_field, None)
# Create forecast
# Map product_id to inventory_product_id if needed
inventory_product_id = forecast_data.get('inventory_product_id') or forecast_data.get('product_id')
# Map predicted_quantity to predicted_demand if needed
predicted_demand = forecast_data.get('predicted_demand') or forecast_data.get('predicted_quantity')
new_forecast = Forecast(
2025-12-13 23:57:54 +01:00
id=transformed_id,
tenant_id=virtual_uuid,
2025-12-13 23:57:54 +01:00
inventory_product_id=inventory_product_id,
product_name=forecast_data.get('product_name'),
location=forecast_data.get('location'),
forecast_date=forecast_data.get('forecast_date'),
created_at=forecast_data.get('created_at', session_time),
predicted_demand=predicted_demand,
confidence_lower=forecast_data.get('confidence_lower'),
confidence_upper=forecast_data.get('confidence_upper'),
confidence_level=forecast_data.get('confidence_level', 0.8),
model_id=forecast_data.get('model_id'),
model_version=forecast_data.get('model_version'),
algorithm=forecast_data.get('algorithm', 'prophet'),
business_type=forecast_data.get('business_type', 'individual'),
day_of_week=forecast_data.get('day_of_week'),
is_holiday=forecast_data.get('is_holiday', False),
is_weekend=forecast_data.get('is_weekend', False),
weather_temperature=forecast_data.get('weather_temperature'),
weather_precipitation=forecast_data.get('weather_precipitation'),
weather_description=forecast_data.get('weather_description'),
traffic_volume=forecast_data.get('traffic_volume'),
processing_time_ms=forecast_data.get('processing_time_ms'),
features_used=forecast_data.get('features_used')
)
db.add(new_forecast)
stats["forecasts"] += 1
2025-12-13 23:57:54 +01:00
# Transform and insert prediction batches
for batch_data in seed_data.get('prediction_batches', []):
# Transform ID using XOR
from shared.utils.demo_id_transformer import transform_id
try:
batch_uuid = uuid.UUID(batch_data['id'])
tenant_uuid = uuid.UUID(virtual_tenant_id)
transformed_id = transform_id(batch_data['id'], tenant_uuid)
except ValueError as e:
logger.error("Failed to parse UUIDs for ID transformation",
batch_id=batch_data['id'],
virtual_tenant_id=virtual_tenant_id,
error=str(e))
raise HTTPException(
status_code=400,
detail=f"Invalid UUID format in batch data: {str(e)}"
)
# Transform dates
for date_field in ['requested_at', 'completed_at']:
if date_field in batch_data:
try:
date_value = batch_data[date_field]
if isinstance(date_value, str):
original_date = datetime.fromisoformat(date_value)
elif hasattr(date_value, 'isoformat'):
original_date = date_value
else:
logger.warning("Skipping invalid date format",
date_field=date_field,
date_value=date_value)
continue
adjusted_batch_date = adjust_date_for_demo(
original_date,
session_time,
BASE_REFERENCE_DATE
)
batch_data[date_field] = adjusted_batch_date
except (ValueError, AttributeError) as e:
logger.warning("Failed to parse date, skipping",
date_field=date_field,
date_value=batch_data[date_field],
error=str(e))
batch_data.pop(date_field, None)
# Create prediction batch
new_batch = PredictionBatch(
2025-12-13 23:57:54 +01:00
id=transformed_id,
tenant_id=virtual_uuid,
2025-12-13 23:57:54 +01:00
batch_name=batch_data.get('batch_name'),
requested_at=batch_data.get('requested_at'),
completed_at=batch_data.get('completed_at'),
status=batch_data.get('status'),
total_products=batch_data.get('total_products'),
completed_products=batch_data.get('completed_products'),
failed_products=batch_data.get('failed_products'),
forecast_days=batch_data.get('forecast_days'),
business_type=batch_data.get('business_type'),
error_message=batch_data.get('error_message'),
processing_time_ms=batch_data.get('processing_time_ms'),
cancelled_by=batch_data.get('cancelled_by')
)
db.add(new_batch)
stats["prediction_batches"] += 1
# Commit all changes
await db.commit()
total_records = sum(stats.values())
duration_ms = int((datetime.now(timezone.utc) - start_time).total_seconds() * 1000)
logger.info(
2025-12-13 23:57:54 +01:00
"Forecasting data cloned successfully",
virtual_tenant_id=str(virtual_uuid),
records_cloned=total_records,
duration_ms=duration_ms,
forecasts_cloned=stats["forecasts"],
batches_cloned=stats["prediction_batches"]
)
return {
"service": "forecasting",
"status": "completed",
"records_cloned": total_records,
"duration_ms": duration_ms,
2025-12-13 23:57:54 +01:00
"details": {
"forecasts": stats["forecasts"],
"prediction_batches": stats["prediction_batches"],
"virtual_tenant_id": str(virtual_uuid)
}
}
except ValueError as e:
2025-12-13 23:57:54 +01:00
logger.error("Invalid UUID format", error=str(e), virtual_tenant_id=virtual_tenant_id)
raise HTTPException(status_code=400, detail=f"Invalid UUID: {str(e)}")
except Exception as e:
logger.error(
"Failed to clone forecasting data",
error=str(e),
virtual_tenant_id=virtual_tenant_id,
exc_info=True
)
# Rollback on error
await db.rollback()
return {
"service": "forecasting",
"status": "failed",
"records_cloned": 0,
"duration_ms": int((datetime.now(timezone.utc) - start_time).total_seconds() * 1000),
"error": str(e)
}
@router.get("/clone/health")
async def clone_health_check(_: bool = Depends(verify_internal_api_key)):
"""
Health check for internal cloning endpoint
Used by orchestrator to verify service availability
"""
return {
"service": "forecasting",
"clone_endpoint": "available",
"version": "2.0.0"
}
2025-12-13 23:57:54 +01:00
@router.delete("/tenant/{virtual_tenant_id}")
async def delete_demo_tenant_data(
virtual_tenant_id: uuid.UUID,
db: AsyncSession = Depends(get_db),
_: bool = Depends(verify_internal_api_key)
):
"""
Delete all demo data for a virtual tenant.
This endpoint is idempotent - safe to call multiple times.
"""
from sqlalchemy import delete
start_time = datetime.now(timezone.utc)
records_deleted = {
"forecasts": 0,
"prediction_batches": 0,
"total": 0
}
try:
# Delete in reverse dependency order
# 1. Delete prediction batches
result = await db.execute(
delete(PredictionBatch)
.where(PredictionBatch.tenant_id == virtual_tenant_id)
)
records_deleted["prediction_batches"] = result.rowcount
# 2. Delete forecasts
result = await db.execute(
delete(Forecast)
.where(Forecast.tenant_id == virtual_tenant_id)
)
records_deleted["forecasts"] = result.rowcount
records_deleted["total"] = sum(records_deleted.values())
await db.commit()
logger.info(
"demo_data_deleted",
service="forecasting",
virtual_tenant_id=str(virtual_tenant_id),
records_deleted=records_deleted
)
return {
"service": "forecasting",
"status": "deleted",
"virtual_tenant_id": str(virtual_tenant_id),
"records_deleted": records_deleted,
"duration_ms": int((datetime.now(timezone.utc) - start_time).total_seconds() * 1000)
}
except Exception as e:
await db.rollback()
logger.error(
"demo_data_deletion_failed",
service="forecasting",
virtual_tenant_id=str(virtual_tenant_id),
error=str(e)
)
raise HTTPException(
status_code=500,
detail=f"Failed to delete demo data: {str(e)}"
)