210 lines
6.6 KiB
Python
210 lines
6.6 KiB
Python
|
|
#!/usr/bin/env python3
|
||
|
|
"""
|
||
|
|
Enhance Procurement Data for AI Insights
|
||
|
|
Adds purchase order items with price trends to enable procurement insights
|
||
|
|
"""
|
||
|
|
|
||
|
|
import json
|
||
|
|
import random
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
# Set seed for reproducibility
|
||
|
|
random.seed(42)
|
||
|
|
|
||
|
|
# Price trend data (realistic price movements over 90 days)
|
||
|
|
INGREDIENTS_WITH_TRENDS = [
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000001",
|
||
|
|
"name": "Harina de Trigo T55",
|
||
|
|
"base_price": 0.85,
|
||
|
|
"trend": 0.08, # 8% increase over 90 days
|
||
|
|
"variability": 0.02,
|
||
|
|
"unit": "kg"
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000002",
|
||
|
|
"name": "Harina de Trigo T65",
|
||
|
|
"base_price": 0.95,
|
||
|
|
"trend": 0.06, # 6% increase
|
||
|
|
"variability": 0.02,
|
||
|
|
"unit": "kg"
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000011",
|
||
|
|
"name": "Mantequilla sin Sal",
|
||
|
|
"base_price": 6.50,
|
||
|
|
"trend": 0.12, # 12% increase (highest)
|
||
|
|
"variability": 0.05,
|
||
|
|
"unit": "kg"
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000012",
|
||
|
|
"name": "Leche Entera Fresca",
|
||
|
|
"base_price": 0.95,
|
||
|
|
"trend": -0.03, # 3% decrease (seasonal surplus)
|
||
|
|
"variability": 0.02,
|
||
|
|
"unit": "L"
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000021",
|
||
|
|
"name": "Levadura Fresca",
|
||
|
|
"base_price": 4.20,
|
||
|
|
"trend": 0.04, # 4% increase
|
||
|
|
"variability": 0.03,
|
||
|
|
"unit": "kg"
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"id": "10000000-0000-0000-0000-000000000032",
|
||
|
|
"name": "Azúcar Blanco",
|
||
|
|
"base_price": 1.10,
|
||
|
|
"trend": 0.02, # 2% increase (stable)
|
||
|
|
"variability": 0.01,
|
||
|
|
"unit": "kg"
|
||
|
|
},
|
||
|
|
]
|
||
|
|
|
||
|
|
|
||
|
|
def calculate_price(ingredient, days_ago):
|
||
|
|
"""
|
||
|
|
Calculate price based on linear trend + random variability
|
||
|
|
|
||
|
|
Args:
|
||
|
|
ingredient: Dict with base_price, trend, variability
|
||
|
|
days_ago: Number of days in the past
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
Price at that point in time
|
||
|
|
"""
|
||
|
|
# Apply trend proportionally based on how far back in time
|
||
|
|
# If trend is 8% over 90 days, price 45 days ago had 4% increase from base
|
||
|
|
trend_factor = 1 + (ingredient["trend"] * (90 - days_ago) / 90)
|
||
|
|
|
||
|
|
# Add random variability
|
||
|
|
variability = random.uniform(-ingredient["variability"], ingredient["variability"])
|
||
|
|
|
||
|
|
price = ingredient["base_price"] * trend_factor * (1 + variability)
|
||
|
|
return round(price, 2)
|
||
|
|
|
||
|
|
|
||
|
|
def parse_days_ago(order_date_str):
|
||
|
|
"""Parse order_date to extract days ago"""
|
||
|
|
if 'BASE_TS' in order_date_str:
|
||
|
|
if '- ' in order_date_str:
|
||
|
|
# Extract number from "BASE_TS - 1d" or "BASE_TS - 1h"
|
||
|
|
parts = order_date_str.split('- ')[1]
|
||
|
|
if 'd' in parts:
|
||
|
|
try:
|
||
|
|
return int(parts.split('d')[0])
|
||
|
|
except:
|
||
|
|
pass
|
||
|
|
elif 'h' in parts:
|
||
|
|
# Hours - treat as 0 days
|
||
|
|
return 0
|
||
|
|
elif '+ ' in order_date_str:
|
||
|
|
# Future date - treat as 0 days ago (current price)
|
||
|
|
return 0
|
||
|
|
return 30 # Default fallback
|
||
|
|
|
||
|
|
|
||
|
|
def add_items_to_pos():
|
||
|
|
"""Add items arrays to purchase orders with realistic price trends"""
|
||
|
|
|
||
|
|
fixture_path = Path(__file__).parent / "07-procurement.json"
|
||
|
|
|
||
|
|
print("🔧 Enhancing Procurement Data for AI Insights...")
|
||
|
|
print()
|
||
|
|
|
||
|
|
# Load existing data
|
||
|
|
with open(fixture_path, 'r', encoding='utf-8') as f:
|
||
|
|
data = json.load(f)
|
||
|
|
|
||
|
|
pos = data.get('purchase_orders', [])
|
||
|
|
print(f"📦 Found {len(pos)} purchase orders")
|
||
|
|
print()
|
||
|
|
|
||
|
|
items_added = 0
|
||
|
|
|
||
|
|
for i, po in enumerate(pos):
|
||
|
|
# Parse order date to get days ago
|
||
|
|
order_date_str = po.get('order_date', 'BASE_TS - 1d')
|
||
|
|
days_ago = parse_days_ago(order_date_str)
|
||
|
|
|
||
|
|
# Select 2-4 random ingredients for this PO
|
||
|
|
num_items = random.randint(2, 4)
|
||
|
|
selected_ingredients = random.sample(INGREDIENTS_WITH_TRENDS, k=num_items)
|
||
|
|
|
||
|
|
items = []
|
||
|
|
po_subtotal = 0.0
|
||
|
|
|
||
|
|
for ingredient in selected_ingredients:
|
||
|
|
# Calculate price at this point in time
|
||
|
|
unit_price = calculate_price(ingredient, days_ago)
|
||
|
|
|
||
|
|
# Order quantity (realistic for ingredient type)
|
||
|
|
if ingredient["unit"] == "kg":
|
||
|
|
quantity = random.randint(100, 500)
|
||
|
|
else: # Liters
|
||
|
|
quantity = random.randint(50, 200)
|
||
|
|
|
||
|
|
total_price = round(quantity * unit_price, 2)
|
||
|
|
po_subtotal += total_price
|
||
|
|
|
||
|
|
items.append({
|
||
|
|
"ingredient_id": ingredient["id"],
|
||
|
|
"ingredient_name": ingredient["name"],
|
||
|
|
"ordered_quantity": float(quantity),
|
||
|
|
"unit": ingredient["unit"],
|
||
|
|
"unit_price": unit_price,
|
||
|
|
"total_price": total_price,
|
||
|
|
"received_quantity": None,
|
||
|
|
"status": "pending" if po.get('status') != 'delivered' else "received"
|
||
|
|
})
|
||
|
|
|
||
|
|
# Add items to PO
|
||
|
|
po['items'] = items
|
||
|
|
|
||
|
|
# Update PO totals to match items
|
||
|
|
po['subtotal'] = round(po_subtotal, 2)
|
||
|
|
tax_rate = 0.21 # 21% IVA in Spain
|
||
|
|
po['tax_amount'] = round(po_subtotal * tax_rate, 2)
|
||
|
|
po['shipping_cost'] = 15.0 if po_subtotal < 500 else 20.0
|
||
|
|
po['total_amount'] = round(po['subtotal'] + po['tax_amount'] + po['shipping_cost'], 2)
|
||
|
|
|
||
|
|
items_added += len(items)
|
||
|
|
|
||
|
|
print(f" ✓ PO-{i+1} ({order_date_str}): {len(items)} items, €{po['total_amount']:.2f} total")
|
||
|
|
|
||
|
|
# Save back
|
||
|
|
with open(fixture_path, 'w', encoding='utf-8') as f:
|
||
|
|
json.dump(data, f, indent=2, ensure_ascii=False)
|
||
|
|
|
||
|
|
print()
|
||
|
|
print("=" * 60)
|
||
|
|
print("✅ PROCUREMENT DATA ENHANCEMENT COMPLETE")
|
||
|
|
print("=" * 60)
|
||
|
|
print()
|
||
|
|
print(f"📊 SUMMARY:")
|
||
|
|
print(f" • Purchase orders enhanced: {len(pos)}")
|
||
|
|
print(f" • Total items added: {items_added}")
|
||
|
|
print(f" • Average items per PO: {items_added / len(pos):.1f}")
|
||
|
|
print()
|
||
|
|
print("🎯 PRICE TRENDS ADDED:")
|
||
|
|
for ing in INGREDIENTS_WITH_TRENDS:
|
||
|
|
direction = "↑" if ing["trend"] > 0 else "↓"
|
||
|
|
print(f" {direction} {ing['name']}: {ing['trend']*100:+.1f}% over 90 days")
|
||
|
|
print()
|
||
|
|
print("🚀 PROCUREMENT INSIGHTS READY:")
|
||
|
|
print(" ✓ Price Forecaster: Can detect trends & recommend actions")
|
||
|
|
print(" ✓ Supplier Performance: Can analyze delivery reliability")
|
||
|
|
print(" ✓ Cost Optimizer: Can identify bulk buying opportunities")
|
||
|
|
print()
|
||
|
|
print("Next steps:")
|
||
|
|
print(" 1. Create new demo session")
|
||
|
|
print(" 2. Wait 60 seconds for AI models")
|
||
|
|
print(" 3. Check for procurement insights (expect 1-2)")
|
||
|
|
print()
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
add_items_to_pos()
|