2025-07-29 15:08:55 +02:00
|
|
|
# shared/clients/forecast_client.py
|
|
|
|
|
"""
|
2025-10-06 15:27:01 +02:00
|
|
|
Forecast Service Client - Updated for refactored backend structure
|
2025-07-29 15:08:55 +02:00
|
|
|
Handles all API calls to the forecasting service
|
2025-10-06 15:27:01 +02:00
|
|
|
|
|
|
|
|
Backend structure:
|
|
|
|
|
- ATOMIC: /forecasting/forecasts (CRUD)
|
|
|
|
|
- BUSINESS: /forecasting/operations/* (single, multi-day, batch, etc.)
|
|
|
|
|
- ANALYTICS: /forecasting/analytics/* (predictions-performance)
|
2025-07-29 15:08:55 +02:00
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Any, Optional, List
|
2025-09-09 17:40:57 +02:00
|
|
|
from datetime import date
|
2025-07-29 15:08:55 +02:00
|
|
|
from .base_service_client import BaseServiceClient
|
|
|
|
|
from shared.config.base import BaseServiceSettings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ForecastServiceClient(BaseServiceClient):
|
|
|
|
|
"""Client for communicating with the forecasting service"""
|
2025-10-06 15:27:01 +02:00
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
def __init__(self, config: BaseServiceSettings, calling_service_name: str = "unknown"):
|
|
|
|
|
super().__init__(calling_service_name, config)
|
2025-10-06 15:27:01 +02:00
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
def get_service_base_path(self) -> str:
|
|
|
|
|
return "/api/v1"
|
2025-10-06 15:27:01 +02:00
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
# ATOMIC: Forecast CRUD Operations
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
async def get_forecast(self, tenant_id: str, forecast_id: str) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""Get forecast details by ID"""
|
|
|
|
|
return await self.get(f"forecasting/forecasts/{forecast_id}", tenant_id=tenant_id)
|
|
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
async def list_forecasts(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
inventory_product_id: Optional[str] = None,
|
|
|
|
|
start_date: Optional[date] = None,
|
|
|
|
|
end_date: Optional[date] = None,
|
|
|
|
|
limit: int = 50,
|
|
|
|
|
offset: int = 0
|
2025-07-29 15:08:55 +02:00
|
|
|
) -> Optional[List[Dict[str, Any]]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""List forecasts for a tenant with optional filters"""
|
|
|
|
|
params = {"limit": limit, "offset": offset}
|
|
|
|
|
if inventory_product_id:
|
|
|
|
|
params["inventory_product_id"] = inventory_product_id
|
|
|
|
|
if start_date:
|
|
|
|
|
params["start_date"] = start_date.isoformat()
|
|
|
|
|
if end_date:
|
|
|
|
|
params["end_date"] = end_date.isoformat()
|
|
|
|
|
|
|
|
|
|
return await self.get("forecasting/forecasts", tenant_id=tenant_id, params=params)
|
|
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
async def delete_forecast(self, tenant_id: str, forecast_id: str) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""Delete a forecast"""
|
2025-10-06 15:27:01 +02:00
|
|
|
return await self.delete(f"forecasting/forecasts/{forecast_id}", tenant_id=tenant_id)
|
|
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
# BUSINESS: Forecasting Operations
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
|
|
|
|
|
async def generate_single_forecast(
|
2025-07-29 15:08:55 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
inventory_product_id: str,
|
|
|
|
|
forecast_date: date,
|
|
|
|
|
include_recommendations: bool = False
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""Generate a single product forecast"""
|
|
|
|
|
data = {
|
|
|
|
|
"inventory_product_id": inventory_product_id,
|
|
|
|
|
"forecast_date": forecast_date.isoformat(),
|
|
|
|
|
"include_recommendations": include_recommendations
|
|
|
|
|
}
|
|
|
|
|
return await self.post("forecasting/operations/single", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
async def generate_multi_day_forecast(
|
2025-07-29 15:08:55 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
inventory_product_id: str,
|
|
|
|
|
forecast_date: date,
|
|
|
|
|
forecast_days: int = 7,
|
|
|
|
|
include_recommendations: bool = False
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""Generate multiple daily forecasts for the specified period"""
|
|
|
|
|
data = {
|
|
|
|
|
"inventory_product_id": inventory_product_id,
|
|
|
|
|
"forecast_date": forecast_date.isoformat(),
|
|
|
|
|
"forecast_days": forecast_days,
|
|
|
|
|
"include_recommendations": include_recommendations
|
|
|
|
|
}
|
|
|
|
|
return await self.post("forecasting/operations/multi-day", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
async def generate_batch_forecast(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
inventory_product_ids: List[str],
|
|
|
|
|
forecast_date: date,
|
|
|
|
|
forecast_days: int = 1
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""Generate forecasts for multiple products in batch"""
|
|
|
|
|
data = {
|
|
|
|
|
"inventory_product_ids": inventory_product_ids,
|
|
|
|
|
"forecast_date": forecast_date.isoformat(),
|
|
|
|
|
"forecast_days": forecast_days
|
|
|
|
|
}
|
|
|
|
|
return await self.post("forecasting/operations/batch", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
async def generate_realtime_prediction(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
inventory_product_id: str,
|
2025-07-29 15:08:55 +02:00
|
|
|
model_id: str,
|
|
|
|
|
features: Dict[str, Any],
|
2025-10-06 15:27:01 +02:00
|
|
|
model_path: Optional[str] = None,
|
|
|
|
|
confidence_level: float = 0.8
|
2025-07-29 15:08:55 +02:00
|
|
|
) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""Generate real-time prediction"""
|
2025-07-29 15:08:55 +02:00
|
|
|
data = {
|
2025-10-06 15:27:01 +02:00
|
|
|
"inventory_product_id": inventory_product_id,
|
2025-07-29 15:08:55 +02:00
|
|
|
"model_id": model_id,
|
|
|
|
|
"features": features,
|
2025-10-06 15:27:01 +02:00
|
|
|
"confidence_level": confidence_level
|
2025-07-29 15:08:55 +02:00
|
|
|
}
|
2025-10-06 15:27:01 +02:00
|
|
|
if model_path:
|
|
|
|
|
data["model_path"] = model_path
|
|
|
|
|
|
|
|
|
|
return await self.post("forecasting/operations/realtime", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
async def validate_predictions(
|
2025-09-09 17:40:57 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
start_date: date,
|
|
|
|
|
end_date: date
|
2025-09-09 17:40:57 +02:00
|
|
|
) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""Validate predictions against actual sales data"""
|
|
|
|
|
params = {
|
|
|
|
|
"start_date": start_date.isoformat(),
|
|
|
|
|
"end_date": end_date.isoformat()
|
2025-09-09 17:40:57 +02:00
|
|
|
}
|
2025-10-06 15:27:01 +02:00
|
|
|
return await self.post("forecasting/operations/validate-predictions", params=params, tenant_id=tenant_id)
|
|
|
|
|
|
2025-11-05 13:34:56 +01:00
|
|
|
async def validate_forecasts(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
date: date
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
Validate forecasts for a specific date against actual sales.
|
|
|
|
|
Calculates MAPE, RMSE, MAE and identifies products with poor accuracy.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tenant_id: Tenant UUID
|
2025-11-18 07:17:17 +01:00
|
|
|
date: Date to validate (validates this single day)
|
2025-11-05 13:34:56 +01:00
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Dict with overall metrics and poor accuracy products list
|
|
|
|
|
"""
|
2025-11-18 07:17:17 +01:00
|
|
|
from datetime import datetime, timezone
|
|
|
|
|
|
|
|
|
|
# Convert date to datetime with timezone for start/end of day
|
|
|
|
|
start_datetime = datetime.combine(date, datetime.min.time()).replace(tzinfo=timezone.utc)
|
|
|
|
|
end_datetime = datetime.combine(date, datetime.max.time()).replace(tzinfo=timezone.utc)
|
|
|
|
|
|
|
|
|
|
# Call the new validation endpoint
|
|
|
|
|
result = await self.post(
|
|
|
|
|
"forecasting/validation/validate-yesterday",
|
|
|
|
|
params={"orchestration_run_id": None},
|
|
|
|
|
tenant_id=tenant_id
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if not result:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
# Transform the new response format to match the expected format
|
|
|
|
|
overall_metrics = result.get("overall_metrics", {})
|
|
|
|
|
|
|
|
|
|
# Get poor accuracy products from the result
|
|
|
|
|
poor_accuracy_products = result.get("poor_accuracy_products", [])
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
"overall_mape": overall_metrics.get("mape", 0),
|
|
|
|
|
"overall_rmse": overall_metrics.get("rmse", 0),
|
|
|
|
|
"overall_mae": overall_metrics.get("mae", 0),
|
|
|
|
|
"overall_r2_score": overall_metrics.get("r2_score", 0),
|
|
|
|
|
"overall_accuracy_percentage": overall_metrics.get("accuracy_percentage", 0),
|
|
|
|
|
"products_validated": result.get("forecasts_with_actuals", 0),
|
|
|
|
|
"poor_accuracy_products": poor_accuracy_products,
|
|
|
|
|
"validation_run_id": result.get("validation_run_id"),
|
|
|
|
|
"forecasts_evaluated": result.get("forecasts_evaluated", 0),
|
|
|
|
|
"forecasts_with_actuals": result.get("forecasts_with_actuals", 0),
|
|
|
|
|
"forecasts_without_actuals": result.get("forecasts_without_actuals", 0)
|
2025-11-05 13:34:56 +01:00
|
|
|
}
|
|
|
|
|
|
2025-10-06 15:27:01 +02:00
|
|
|
async def get_forecast_statistics(
|
2025-07-29 15:08:55 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
start_date: Optional[date] = None,
|
|
|
|
|
end_date: Optional[date] = None
|
2025-07-29 15:08:55 +02:00
|
|
|
) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""Get forecast statistics"""
|
2025-07-29 15:08:55 +02:00
|
|
|
params = {}
|
|
|
|
|
if start_date:
|
2025-10-06 15:27:01 +02:00
|
|
|
params["start_date"] = start_date.isoformat()
|
2025-07-29 15:08:55 +02:00
|
|
|
if end_date:
|
2025-10-06 15:27:01 +02:00
|
|
|
params["end_date"] = end_date.isoformat()
|
|
|
|
|
|
|
|
|
|
return await self.get("forecasting/operations/statistics", tenant_id=tenant_id, params=params)
|
|
|
|
|
|
|
|
|
|
async def clear_prediction_cache(self, tenant_id: str) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""Clear prediction cache"""
|
|
|
|
|
return await self.delete("forecasting/operations/cache", tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
# ================================================================
|
|
|
|
|
# ANALYTICS: Forecasting Analytics
|
|
|
|
|
# ================================================================
|
|
|
|
|
|
|
|
|
|
async def get_predictions_performance(
|
2025-07-29 15:08:55 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
start_date: Optional[date] = None,
|
|
|
|
|
end_date: Optional[date] = None
|
2025-07-29 15:08:55 +02:00
|
|
|
) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""Get predictions performance analytics"""
|
|
|
|
|
params = {}
|
|
|
|
|
if start_date:
|
|
|
|
|
params["start_date"] = start_date.isoformat()
|
|
|
|
|
if end_date:
|
|
|
|
|
params["end_date"] = end_date.isoformat()
|
|
|
|
|
|
|
|
|
|
return await self.get("forecasting/analytics/predictions-performance", tenant_id=tenant_id, params=params)
|
|
|
|
|
|
2025-11-05 13:34:56 +01:00
|
|
|
# ================================================================
|
|
|
|
|
# ML INSIGHTS: Dynamic Rules Generation
|
|
|
|
|
# ================================================================
|
|
|
|
|
|
|
|
|
|
async def trigger_rules_generation(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
product_ids: Optional[List[str]] = None,
|
|
|
|
|
lookback_days: int = 90,
|
|
|
|
|
min_samples: int = 10
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
Trigger dynamic business rules learning for demand forecasting.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tenant_id: Tenant UUID
|
|
|
|
|
product_ids: Specific product IDs to analyze. If None, analyzes all products
|
|
|
|
|
lookback_days: Days of historical data to analyze (30-365)
|
|
|
|
|
min_samples: Minimum samples required for rule learning (5-100)
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Dict with rules generation results including insights posted
|
|
|
|
|
"""
|
|
|
|
|
data = {
|
|
|
|
|
"product_ids": product_ids,
|
|
|
|
|
"lookback_days": lookback_days,
|
|
|
|
|
"min_samples": min_samples
|
|
|
|
|
}
|
|
|
|
|
return await self.post("forecasting/ml/insights/generate-rules", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
# Legacy/Compatibility Methods (deprecated)
|
2025-07-29 15:08:55 +02:00
|
|
|
# ================================================================
|
2025-10-06 15:27:01 +02:00
|
|
|
|
2025-11-05 13:34:56 +01:00
|
|
|
async def generate_forecasts(
|
|
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
forecast_days: int = 7,
|
|
|
|
|
inventory_product_ids: Optional[List[str]] = None
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
COMPATIBILITY: Orchestrator-friendly method to generate forecasts
|
|
|
|
|
|
|
|
|
|
This method is called by the orchestrator service and generates batch forecasts
|
|
|
|
|
for either specified products or all products.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tenant_id: Tenant UUID
|
|
|
|
|
forecast_days: Number of days to forecast (default 7)
|
|
|
|
|
inventory_product_ids: Optional list of product IDs. If None, forecasts all products.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Dict with forecast results
|
|
|
|
|
"""
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
# If no product IDs specified, let the backend handle it
|
|
|
|
|
if not inventory_product_ids:
|
|
|
|
|
# Call the batch operation endpoint to forecast all products
|
|
|
|
|
# The forecasting service will handle fetching all products internally
|
|
|
|
|
data = {
|
|
|
|
|
"batch_name": f"orchestrator-batch-{datetime.now().strftime('%Y%m%d')}",
|
|
|
|
|
"inventory_product_ids": [], # Empty list will trigger fetching all products
|
|
|
|
|
"forecast_days": forecast_days
|
|
|
|
|
}
|
|
|
|
|
return await self.post("forecasting/operations/batch", data=data, tenant_id=tenant_id)
|
|
|
|
|
|
|
|
|
|
# Otherwise use the standard batch forecast
|
|
|
|
|
return await self.generate_batch_forecast(
|
|
|
|
|
tenant_id=tenant_id,
|
|
|
|
|
inventory_product_ids=inventory_product_ids,
|
|
|
|
|
forecast_date=datetime.now().date(),
|
|
|
|
|
forecast_days=forecast_days
|
|
|
|
|
)
|
|
|
|
|
|
2025-10-06 15:27:01 +02:00
|
|
|
async def create_forecast(
|
2025-07-29 15:08:55 +02:00
|
|
|
self,
|
|
|
|
|
tenant_id: str,
|
|
|
|
|
model_id: str,
|
|
|
|
|
start_date: str,
|
|
|
|
|
end_date: str,
|
2025-10-06 15:27:01 +02:00
|
|
|
product_ids: Optional[List[str]] = None,
|
|
|
|
|
include_confidence_intervals: bool = True,
|
2025-07-29 15:08:55 +02:00
|
|
|
**kwargs
|
|
|
|
|
) -> Optional[Dict[str, Any]]:
|
2025-10-06 15:27:01 +02:00
|
|
|
"""
|
|
|
|
|
DEPRECATED: Use generate_single_forecast or generate_batch_forecast instead
|
|
|
|
|
Legacy method for backward compatibility
|
|
|
|
|
"""
|
|
|
|
|
# Map to new batch forecast operation
|
|
|
|
|
if product_ids:
|
|
|
|
|
return await self.generate_batch_forecast(
|
|
|
|
|
tenant_id=tenant_id,
|
|
|
|
|
inventory_product_ids=product_ids,
|
|
|
|
|
forecast_date=date.fromisoformat(start_date),
|
|
|
|
|
forecast_days=1
|
|
|
|
|
)
|
|
|
|
|
return None
|