Files
bakery-ia/services/inventory/app/api/classification.py

240 lines
10 KiB
Python
Raw Normal View History

# services/inventory/app/api/classification.py
"""
Product Classification API Endpoints
AI-powered product classification for onboarding automation
"""
from fastapi import APIRouter, Depends, HTTPException, Path
2025-08-14 13:26:59 +02:00
from typing import List, Dict, Any, Optional
from uuid import UUID, uuid4
from pydantic import BaseModel, Field
import structlog
from app.services.product_classifier import ProductClassifierService, get_product_classifier
from shared.auth.decorators import get_current_user_dep
router = APIRouter(tags=["classification"])
logger = structlog.get_logger()
class ProductClassificationRequest(BaseModel):
"""Request for single product classification"""
product_name: str = Field(..., description="Product name to classify")
sales_volume: float = Field(None, description="Total sales volume for context")
sales_data: Dict[str, Any] = Field(default_factory=dict, description="Additional sales context")
class BatchClassificationRequest(BaseModel):
"""Request for batch product classification"""
products: List[ProductClassificationRequest] = Field(..., description="Products to classify")
class ProductSuggestionResponse(BaseModel):
"""Response with product classification suggestion"""
suggestion_id: str
original_name: str
suggested_name: str
product_type: str
category: str
unit_of_measure: str
confidence_score: float
2025-08-14 13:26:59 +02:00
estimated_shelf_life_days: Optional[int] = None
requires_refrigeration: bool = False
requires_freezing: bool = False
is_seasonal: bool = False
2025-08-14 13:26:59 +02:00
suggested_supplier: Optional[str] = None
notes: Optional[str] = None
class BusinessModelAnalysisResponse(BaseModel):
"""Response with business model analysis"""
model: str # production, retail, hybrid
confidence: float
ingredient_count: int
finished_product_count: int
ingredient_ratio: float
recommendations: List[str]
class BatchClassificationResponse(BaseModel):
"""Response for batch classification"""
suggestions: List[ProductSuggestionResponse]
business_model_analysis: BusinessModelAnalysisResponse
total_products: int
high_confidence_count: int
low_confidence_count: int
@router.post("/tenants/{tenant_id}/inventory/classify-product", response_model=ProductSuggestionResponse)
async def classify_single_product(
request: ProductClassificationRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
classifier: ProductClassifierService = Depends(get_product_classifier)
):
"""Classify a single product for inventory creation"""
try:
# Classify the product
suggestion = classifier.classify_product(
request.product_name,
request.sales_volume
)
# Convert to response format
response = ProductSuggestionResponse(
2025-08-14 13:26:59 +02:00
suggestion_id=str(uuid4()), # Generate unique ID for tracking
original_name=suggestion.original_name,
suggested_name=suggestion.suggested_name,
product_type=suggestion.product_type.value,
category=suggestion.category,
unit_of_measure=suggestion.unit_of_measure.value,
confidence_score=suggestion.confidence_score,
estimated_shelf_life_days=suggestion.estimated_shelf_life_days,
requires_refrigeration=suggestion.requires_refrigeration,
requires_freezing=suggestion.requires_freezing,
is_seasonal=suggestion.is_seasonal,
suggested_supplier=suggestion.suggested_supplier,
notes=suggestion.notes
)
logger.info("Classified single product",
product=request.product_name,
classification=suggestion.product_type.value,
confidence=suggestion.confidence_score,
tenant_id=tenant_id)
return response
except Exception as e:
logger.error("Failed to classify product",
error=str(e), product=request.product_name, tenant_id=tenant_id)
raise HTTPException(status_code=500, detail=f"Classification failed: {str(e)}")
@router.post("/tenants/{tenant_id}/inventory/classify-products-batch", response_model=BatchClassificationResponse)
async def classify_products_batch(
request: BatchClassificationRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
classifier: ProductClassifierService = Depends(get_product_classifier)
):
"""Classify multiple products for onboarding automation"""
try:
if not request.products:
raise HTTPException(status_code=400, detail="No products provided for classification")
# Extract product names and volumes
product_names = [p.product_name for p in request.products]
sales_volumes = {p.product_name: p.sales_volume for p in request.products if p.sales_volume}
# Classify products in batch
suggestions = classifier.classify_products_batch(product_names, sales_volumes)
# Convert suggestions to response format
suggestion_responses = []
for suggestion in suggestions:
suggestion_responses.append(ProductSuggestionResponse(
2025-08-14 13:26:59 +02:00
suggestion_id=str(uuid4()),
original_name=suggestion.original_name,
suggested_name=suggestion.suggested_name,
product_type=suggestion.product_type.value,
category=suggestion.category,
unit_of_measure=suggestion.unit_of_measure.value,
confidence_score=suggestion.confidence_score,
estimated_shelf_life_days=suggestion.estimated_shelf_life_days,
requires_refrigeration=suggestion.requires_refrigeration,
requires_freezing=suggestion.requires_freezing,
is_seasonal=suggestion.is_seasonal,
suggested_supplier=suggestion.suggested_supplier,
notes=suggestion.notes
))
2025-08-14 13:26:59 +02:00
# Analyze business model with enhanced detection
ingredient_count = sum(1 for s in suggestions if s.product_type.value == 'ingredient')
finished_count = sum(1 for s in suggestions if s.product_type.value == 'finished_product')
2025-08-14 13:26:59 +02:00
semi_finished_count = sum(1 for s in suggestions if 'semi' in s.suggested_name.lower() or 'frozen' in s.suggested_name.lower() or 'pre' in s.suggested_name.lower())
total = len(suggestions)
ingredient_ratio = ingredient_count / total if total > 0 else 0
2025-08-14 13:26:59 +02:00
semi_finished_ratio = semi_finished_count / total if total > 0 else 0
2025-08-14 13:26:59 +02:00
# Enhanced business model determination
if ingredient_ratio >= 0.7:
2025-08-14 13:26:59 +02:00
model = 'individual_bakery' # Full production from raw ingredients
elif ingredient_ratio <= 0.2 and semi_finished_ratio >= 0.3:
model = 'central_baker_satellite' # Receives semi-finished products from central baker
elif ingredient_ratio <= 0.3:
2025-08-14 13:26:59 +02:00
model = 'retail_bakery' # Sells finished products from suppliers
else:
2025-08-14 13:26:59 +02:00
model = 'hybrid_bakery' # Mixed model
2025-08-14 13:26:59 +02:00
# Calculate confidence based on clear distinction
if model == 'individual_bakery':
confidence = min(ingredient_ratio * 1.2, 0.95)
elif model == 'central_baker_satellite':
confidence = min((semi_finished_ratio + (1 - ingredient_ratio)) / 2 * 1.2, 0.95)
else:
confidence = max(abs(ingredient_ratio - 0.5) * 2, 0.1)
recommendations = {
2025-08-14 13:26:59 +02:00
'individual_bakery': [
'Set up raw ingredient inventory management',
'Configure recipe cost calculation and production planning',
'Enable supplier relationships for flour, yeast, sugar, etc.',
'Set up full production workflow with proofing and baking schedules',
'Enable waste tracking for overproduction'
],
'central_baker_satellite': [
'Configure central baker delivery schedules',
'Set up semi-finished product inventory (frozen dough, par-baked items)',
'Enable finish-baking workflow and timing optimization',
'Track freshness and shelf-life for received products',
'Focus on customer demand forecasting for final products'
],
2025-08-14 13:26:59 +02:00
'retail_bakery': [
'Set up finished product supplier relationships',
'Configure delivery schedule tracking',
'Enable freshness monitoring and expiration management',
'Focus on sales forecasting and customer preferences'
],
2025-08-14 13:26:59 +02:00
'hybrid_bakery': [
'Configure both ingredient and semi-finished product management',
'Set up flexible production workflows',
'Enable both supplier and central baker relationships',
'Configure multi-tier inventory categories'
]
}
business_model_analysis = BusinessModelAnalysisResponse(
model=model,
confidence=confidence,
ingredient_count=ingredient_count,
finished_product_count=finished_count,
ingredient_ratio=ingredient_ratio,
recommendations=recommendations.get(model, [])
)
# Count confidence levels
high_confidence_count = sum(1 for s in suggestions if s.confidence_score >= 0.7)
low_confidence_count = sum(1 for s in suggestions if s.confidence_score < 0.6)
response = BatchClassificationResponse(
suggestions=suggestion_responses,
business_model_analysis=business_model_analysis,
total_products=len(suggestions),
high_confidence_count=high_confidence_count,
low_confidence_count=low_confidence_count
)
logger.info("Batch classification complete",
total_products=len(suggestions),
business_model=model,
high_confidence=high_confidence_count,
low_confidence=low_confidence_count,
tenant_id=tenant_id)
return response
except Exception as e:
logger.error("Failed batch classification",
error=str(e), products_count=len(request.products), tenant_id=tenant_id)
raise HTTPException(status_code=500, detail=f"Batch classification failed: {str(e)}")