2025-07-17 13:09:24 +02:00
|
|
|
"""
|
|
|
|
|
Training Service
|
|
|
|
|
Handles ML model training for bakery demand forecasting
|
|
|
|
|
"""
|
|
|
|
|
|
2025-07-18 14:41:39 +02:00
|
|
|
import structlog
|
2025-07-17 13:09:24 +02:00
|
|
|
from fastapi import FastAPI, BackgroundTasks
|
|
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
|
|
from app.core.config import settings
|
|
|
|
|
from app.core.database import database_manager
|
|
|
|
|
from app.api import training, models
|
2025-07-18 14:41:39 +02:00
|
|
|
from app.services.messaging import setup_messaging, cleanup_messaging
|
2025-07-17 13:09:24 +02:00
|
|
|
from shared.monitoring.logging import setup_logging
|
|
|
|
|
from shared.monitoring.metrics import MetricsCollector
|
|
|
|
|
|
|
|
|
|
# Setup logging
|
|
|
|
|
setup_logging("training-service", settings.LOG_LEVEL)
|
2025-07-18 14:41:39 +02:00
|
|
|
logger = structlog.get_logger()
|
2025-07-17 13:09:24 +02:00
|
|
|
|
|
|
|
|
# Create FastAPI app
|
|
|
|
|
app = FastAPI(
|
|
|
|
|
title="Training Service",
|
|
|
|
|
description="ML model training service for bakery demand forecasting",
|
|
|
|
|
version="1.0.0"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Initialize metrics collector
|
|
|
|
|
metrics_collector = MetricsCollector("training-service")
|
|
|
|
|
|
|
|
|
|
# CORS middleware
|
|
|
|
|
app.add_middleware(
|
|
|
|
|
CORSMiddleware,
|
|
|
|
|
allow_origins=["*"],
|
|
|
|
|
allow_credentials=True,
|
|
|
|
|
allow_methods=["*"],
|
|
|
|
|
allow_headers=["*"],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Include routers
|
|
|
|
|
app.include_router(training.router, prefix="/training", tags=["training"])
|
|
|
|
|
app.include_router(models.router, prefix="/models", tags=["models"])
|
|
|
|
|
|
|
|
|
|
@app.on_event("startup")
|
|
|
|
|
async def startup_event():
|
|
|
|
|
"""Application startup"""
|
|
|
|
|
logger.info("Starting Training Service")
|
|
|
|
|
|
|
|
|
|
# Create database tables
|
|
|
|
|
await database_manager.create_tables()
|
|
|
|
|
|
|
|
|
|
# Initialize message publisher
|
2025-07-18 14:41:39 +02:00
|
|
|
await setup_messaging()
|
2025-07-17 13:09:24 +02:00
|
|
|
|
|
|
|
|
# Start metrics server
|
|
|
|
|
metrics_collector.start_metrics_server(8080)
|
|
|
|
|
|
|
|
|
|
logger.info("Training Service started successfully")
|
|
|
|
|
|
|
|
|
|
@app.on_event("shutdown")
|
|
|
|
|
async def shutdown_event():
|
|
|
|
|
"""Application shutdown"""
|
|
|
|
|
logger.info("Shutting down Training Service")
|
|
|
|
|
|
|
|
|
|
# Cleanup message publisher
|
2025-07-18 14:41:39 +02:00
|
|
|
await cleanup_messaging()
|
2025-07-17 13:09:24 +02:00
|
|
|
|
|
|
|
|
logger.info("Training Service shutdown complete")
|
|
|
|
|
|
|
|
|
|
@app.get("/health")
|
|
|
|
|
async def health_check():
|
|
|
|
|
"""Health check endpoint"""
|
|
|
|
|
return {
|
|
|
|
|
"status": "healthy",
|
|
|
|
|
"service": "training-service",
|
|
|
|
|
"version": "1.0.0"
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
import uvicorn
|
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|