Files
bakery-ia/services/training/README.md

699 lines
24 KiB
Markdown
Raw Normal View History

2025-11-06 11:04:50 +01:00
# Training Service (ML Model Management)
## Overview
The **Training Service** is the machine learning pipeline engine of Bakery-IA, responsible for training, versioning, and managing Prophet forecasting models. It orchestrates the entire ML workflow from data collection to model deployment, providing real-time progress updates via WebSocket and ensuring bakeries always have the most accurate prediction models. This service enables continuous learning and model improvement without requiring data science expertise.
## Key Features
### Automated ML Pipeline
- **One-Click Model Training** - Train models for all products with a single API call
- **Background Job Processing** - Asynchronous training with job queue management
- **Multi-Product Training** - Process multiple products in parallel
- **Progress Tracking** - Real-time WebSocket updates on training status
- **Automatic Model Versioning** - Track all model versions with performance metrics
- **Model Artifact Storage** - Persist trained models for fast prediction loading
### Training Job Management
- **Job Queue** - FIFO queue for training requests
- **Job Status Tracking** - Monitor pending, running, completed, and failed jobs
- **Concurrent Job Control** - Limit parallel training jobs to prevent resource exhaustion
- **Timeout Handling** - Automatic job termination after maximum duration
- **Error Recovery** - Detailed error messages and retry capabilities
- **Job History** - Complete audit trail of all training executions
### Model Performance Tracking
- **Accuracy Metrics** - MAE, RMSE, R², MAPE for each trained model
- **Historical Comparison** - Compare current vs. previous model performance
- **Per-Product Analytics** - Track which products have the best forecast accuracy
- **Training Duration Tracking** - Monitor training performance and optimization
- **Model Selection** - Automatically deploy best-performing models
### Real-Time Communication
- **WebSocket Live Updates** - Real-time progress percentage and status messages
- **Training Logs** - Detailed step-by-step execution logs
- **Completion Notifications** - RabbitMQ events for training completion
- **Error Alerts** - Immediate notification of training failures
### Feature Engineering
- **Historical Data Aggregation** - Collect sales data for model training
- **External Data Integration** - Fetch weather, traffic, holiday data
- **POI Feature Integration** - Merge location-based POI features into training data
- **Feature Extraction** - Generate 30+ temporal, contextual, and location-based features
2025-11-06 11:04:50 +01:00
- **Data Validation** - Ensure minimum data requirements before training
- **Outlier Detection** - Filter anomalous data points
## Technical Capabilities
### ML Training Pipeline
```python
# Training workflow
async def train_model_pipeline(tenant_id: str, product_id: str):
"""Complete ML training pipeline"""
# Step 1: Data Collection
sales_data = await fetch_historical_sales(tenant_id, product_id)
if len(sales_data) < MIN_TRAINING_DAYS:
raise InsufficientDataError(f"Need {MIN_TRAINING_DAYS}+ days of data")
# Step 2: Feature Engineering
features = engineer_features(sales_data)
weather_data = await fetch_weather_data(tenant_id)
traffic_data = await fetch_traffic_data(tenant_id)
holiday_data = await fetch_holiday_calendar()
poi_features = await fetch_poi_features(tenant_id) # NEW: Location context
# Merge POI features into training dataframe
features = merge_poi_features(features, poi_features)
2025-11-06 11:04:50 +01:00
# Step 3: Prophet Model Training
model = Prophet(
seasonality_mode='additive',
daily_seasonality=True,
weekly_seasonality=True,
yearly_seasonality=True,
)
model.add_country_holidays(country_name='ES')
model.fit(features)
# Step 4: Model Validation
metrics = calculate_performance_metrics(model, sales_data)
# Step 5: Model Storage
model_path = save_model_artifact(model, tenant_id, product_id)
# Step 6: Model Registration
await register_model_in_database(model_path, metrics)
# Step 7: Notification
await publish_training_complete_event(tenant_id, product_id, metrics)
return model, metrics
```
### WebSocket Progress Updates
```python
# Real-time progress broadcasting
async def broadcast_training_progress(job_id: str, progress: dict):
"""Send progress update to connected clients"""
message = {
"type": "training_progress",
"job_id": job_id,
"progress": {
"percentage": progress["percentage"], # 0-100
"current_step": progress["step"], # Step description
"products_completed": progress["completed"],
"products_total": progress["total"],
"estimated_time_remaining": progress["eta"], # Seconds
"started_at": progress["start_time"]
},
"timestamp": datetime.utcnow().isoformat()
}
await websocket_manager.broadcast(job_id, message)
```
### Model Artifact Management
```python
# Model storage and retrieval
import joblib
from pathlib import Path
# Save trained model
def save_model_artifact(model: Prophet, tenant_id: str, product_id: str) -> str:
"""Serialize and store model"""
model_dir = Path(f"/models/{tenant_id}/{product_id}")
model_dir.mkdir(parents=True, exist_ok=True)
version = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
model_path = model_dir / f"model_v{version}.pkl"
joblib.dump(model, model_path)
return str(model_path)
# Load trained model
def load_model_artifact(model_path: str) -> Prophet:
"""Load serialized model"""
return joblib.load(model_path)
```
### Performance Metrics Calculation
```python
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import numpy as np
def calculate_performance_metrics(model: Prophet, actual_data: pd.DataFrame) -> dict:
"""Calculate comprehensive model performance metrics"""
# Make predictions on validation set
predictions = model.predict(actual_data)
# Calculate metrics
mae = mean_absolute_error(actual_data['y'], predictions['yhat'])
rmse = np.sqrt(mean_squared_error(actual_data['y'], predictions['yhat']))
r2 = r2_score(actual_data['y'], predictions['yhat'])
mape = np.mean(np.abs((actual_data['y'] - predictions['yhat']) / actual_data['y'])) * 100
return {
"mae": float(mae), # Mean Absolute Error
"rmse": float(rmse), # Root Mean Square Error
"r2_score": float(r2), # R-squared
"mape": float(mape), # Mean Absolute Percentage Error
"accuracy": float(100 - mape) if mape < 100 else 0.0
}
```
## Business Value
### For Bakery Owners
- **Continuous Improvement** - Models automatically improve with more data
- **No ML Expertise Required** - One-click training, no data science skills needed
- **Always Up-to-Date** - Weekly automatic retraining keeps models accurate
- **Transparent Performance** - Clear accuracy metrics show forecast reliability
- **Cost Savings** - Automated ML pipeline eliminates need for data scientists
### For Operations Managers
- **Model Version Control** - Track and compare model versions over time
- **Performance Monitoring** - Identify products with poor forecast accuracy
- **Training Scheduling** - Schedule retraining during low-traffic hours
- **Resource Management** - Control concurrent training jobs to prevent overload
### For Platform Operations
- **Scalable ML Pipeline** - Train models for thousands of products
- **Background Processing** - Non-blocking training jobs
- **Error Handling** - Robust error recovery and retry mechanisms
- **Cost Optimization** - Efficient model storage and caching
## Technology Stack
- **Framework**: FastAPI (Python 3.11+) - Async web framework with WebSocket support
- **Database**: PostgreSQL 17 - Training logs, model metadata, job queue
- **ML Library**: Prophet (fbprophet) - Time series forecasting
- **Model Storage**: Joblib - Model serialization
- **File System**: Persistent volumes - Model artifact storage
- **WebSocket**: FastAPI WebSocket - Real-time progress updates
- **Messaging**: RabbitMQ 4.1 - Training completion events
- **ORM**: SQLAlchemy 2.0 (async) - Database abstraction
- **Data Processing**: Pandas, NumPy - Data manipulation
- **Logging**: Structlog - Structured JSON logging
- **Metrics**: Prometheus Client - Custom metrics
## API Endpoints (Key Routes)
### Training Management
- `POST /api/v1/training/start` - Start training job for tenant
- `POST /api/v1/training/start/{product_id}` - Train specific product
- `POST /api/v1/training/stop/{job_id}` - Stop running training job
- `GET /api/v1/training/status/{job_id}` - Get job status and progress
- `GET /api/v1/training/history` - Get training job history
- `DELETE /api/v1/training/jobs/{job_id}` - Delete training job record
### Model Management
- `GET /api/v1/training/models` - List all trained models
- `GET /api/v1/training/models/{model_id}` - Get specific model details
- `GET /api/v1/training/models/{model_id}/metrics` - Get model performance metrics
- `GET /api/v1/training/models/latest/{product_id}` - Get latest model for product
- `POST /api/v1/training/models/{model_id}/deploy` - Deploy specific model version
- `DELETE /api/v1/training/models/{model_id}` - Delete model artifact
### WebSocket
- `WS /api/v1/training/ws/{job_id}` - Connect to training progress stream
### Analytics
- `GET /api/v1/training/analytics/performance` - Overall training performance
- `GET /api/v1/training/analytics/accuracy` - Model accuracy distribution
- `GET /api/v1/training/analytics/duration` - Training duration statistics
## Database Schema
### Main Tables
**training_job_queue**
```sql
CREATE TABLE training_job_queue (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL,
job_name VARCHAR(255),
products_to_train TEXT[], -- Array of product IDs
status VARCHAR(50) NOT NULL, -- pending, running, completed, failed
priority INTEGER DEFAULT 0,
progress_percentage INTEGER DEFAULT 0,
current_step VARCHAR(255),
products_completed INTEGER DEFAULT 0,
products_total INTEGER,
started_at TIMESTAMP,
completed_at TIMESTAMP,
estimated_completion TIMESTAMP,
error_message TEXT,
retry_count INTEGER DEFAULT 0,
created_by UUID,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
```
**trained_models**
```sql
CREATE TABLE trained_models (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL,
product_id UUID NOT NULL,
model_version VARCHAR(50) NOT NULL,
model_path VARCHAR(500) NOT NULL,
training_job_id UUID REFERENCES training_job_queue(id),
algorithm VARCHAR(50) DEFAULT 'prophet',
hyperparameters JSONB,
training_duration_seconds INTEGER,
training_data_points INTEGER,
is_deployed BOOLEAN DEFAULT FALSE,
deployed_at TIMESTAMP,
created_at TIMESTAMP DEFAULT NOW(),
UNIQUE(tenant_id, product_id, model_version)
);
```
**model_performance_metrics**
```sql
CREATE TABLE model_performance_metrics (
id UUID PRIMARY KEY,
model_id UUID REFERENCES trained_models(id),
tenant_id UUID NOT NULL,
product_id UUID NOT NULL,
mae DECIMAL(10, 4), -- Mean Absolute Error
rmse DECIMAL(10, 4), -- Root Mean Square Error
r2_score DECIMAL(10, 6), -- R-squared
mape DECIMAL(10, 4), -- Mean Absolute Percentage Error
accuracy_percentage DECIMAL(5, 2),
validation_data_points INTEGER,
created_at TIMESTAMP DEFAULT NOW()
);
```
**model_training_logs**
```sql
CREATE TABLE model_training_logs (
id UUID PRIMARY KEY,
training_job_id UUID REFERENCES training_job_queue(id),
tenant_id UUID NOT NULL,
product_id UUID,
log_level VARCHAR(20), -- DEBUG, INFO, WARNING, ERROR
message TEXT,
step_name VARCHAR(100),
execution_time_ms INTEGER,
metadata JSONB,
created_at TIMESTAMP DEFAULT NOW()
);
```
**model_artifacts** (Metadata only, actual files on disk)
```sql
CREATE TABLE model_artifacts (
id UUID PRIMARY KEY,
model_id UUID REFERENCES trained_models(id),
artifact_type VARCHAR(50), -- model_file, feature_list, scaler, etc.
file_path VARCHAR(500),
file_size_bytes BIGINT,
checksum VARCHAR(64), -- SHA-256 hash
created_at TIMESTAMP DEFAULT NOW()
);
```
## Events & Messaging
### Published Events (RabbitMQ)
**Exchange**: `training`
**Routing Key**: `training.completed`
**Training Completed Event**
```json
{
"event_type": "training_completed",
"tenant_id": "uuid",
"job_id": "uuid",
"job_name": "Weekly retraining - All products",
"status": "completed",
"results": {
"successful_trainings": 25,
"failed_trainings": 2,
"total_products": 27,
"models_created": [
{
"product_id": "uuid",
"product_name": "Baguette",
"model_version": "20251106_143022",
"accuracy": 82.5,
"mae": 12.3,
"rmse": 18.7,
"r2_score": 0.78
}
],
"average_accuracy": 79.8,
"training_duration_seconds": 342
},
"started_at": "2025-11-06T14:25:00Z",
"completed_at": "2025-11-06T14:30:42Z",
"timestamp": "2025-11-06T14:30:42Z"
}
```
**Training Failed Event**
```json
{
"event_type": "training_failed",
"tenant_id": "uuid",
"job_id": "uuid",
"product_id": "uuid",
"product_name": "Croissant",
"error_type": "InsufficientDataError",
"error_message": "Product requires minimum 30 days of sales data. Currently: 15 days.",
"recommended_action": "Collect more sales data before retraining",
"severity": "medium",
"timestamp": "2025-11-06T14:28:15Z"
}
```
### Consumed Events
- **From Orchestrator**: Scheduled training triggers
- **From Sales**: New sales data imported (triggers retraining)
## Custom Metrics (Prometheus)
```python
# Training job metrics
training_jobs_total = Counter(
'training_jobs_total',
'Total training jobs started',
['tenant_id', 'status'] # completed, failed, cancelled
)
training_duration_seconds = Histogram(
'training_duration_seconds',
'Training job duration',
['tenant_id'],
buckets=[10, 30, 60, 120, 300, 600, 1800, 3600] # seconds
)
models_trained_total = Counter(
'models_trained_total',
'Total models successfully trained',
['tenant_id', 'product_category']
)
# Model performance metrics
model_accuracy_distribution = Histogram(
'model_accuracy_percentage',
'Distribution of model accuracy scores',
['tenant_id'],
buckets=[50, 60, 70, 75, 80, 85, 90, 95, 100] # percentage
)
model_mae_distribution = Histogram(
'model_mae',
'Distribution of Mean Absolute Error',
['tenant_id'],
buckets=[1, 5, 10, 20, 30, 50, 100] # units
)
# WebSocket metrics
websocket_connections_total = Gauge(
'training_websocket_connections',
'Active WebSocket connections',
['tenant_id']
)
websocket_messages_sent = Counter(
'training_websocket_messages_total',
'Total WebSocket messages sent',
['tenant_id', 'message_type']
)
```
## Configuration
### Environment Variables
**Service Configuration:**
- `PORT` - Service port (default: 8004)
- `DATABASE_URL` - PostgreSQL connection string
- `RABBITMQ_URL` - RabbitMQ connection string
- `MODEL_STORAGE_PATH` - Path for model artifacts (default: /models)
**Training Configuration:**
- `MAX_CONCURRENT_JOBS` - Maximum parallel training jobs (default: 3)
- `MAX_TRAINING_TIME_MINUTES` - Job timeout (default: 30)
- `MIN_TRAINING_DATA_DAYS` - Minimum history required (default: 30)
- `ENABLE_AUTO_DEPLOYMENT` - Auto-deploy after training (default: true)
**Prophet Configuration:**
- `PROPHET_DAILY_SEASONALITY` - Enable daily patterns (default: true)
- `PROPHET_WEEKLY_SEASONALITY` - Enable weekly patterns (default: true)
- `PROPHET_YEARLY_SEASONALITY` - Enable yearly patterns (default: true)
- `PROPHET_INTERVAL_WIDTH` - Confidence interval (default: 0.95)
- `PROPHET_CHANGEPOINT_PRIOR_SCALE` - Trend flexibility (default: 0.05)
**WebSocket Configuration:**
- `WEBSOCKET_HEARTBEAT_INTERVAL` - Ping interval seconds (default: 30)
- `WEBSOCKET_MAX_CONNECTIONS` - Max connections per tenant (default: 10)
- `WEBSOCKET_MESSAGE_QUEUE_SIZE` - Message buffer size (default: 100)
**Storage Configuration:**
- `MODEL_RETENTION_DAYS` - Days to keep old models (default: 90)
- `MAX_MODEL_VERSIONS_PER_PRODUCT` - Version limit (default: 10)
- `ENABLE_MODEL_COMPRESSION` - Compress model files (default: true)
## Development Setup
### Prerequisites
- Python 3.11+
- PostgreSQL 17
- RabbitMQ 4.1
- Persistent storage for model artifacts
### Local Development
```bash
# Create virtual environment
cd services/training
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Set environment variables
export DATABASE_URL=postgresql://user:pass@localhost:5432/training
export RABBITMQ_URL=amqp://guest:guest@localhost:5672/
export MODEL_STORAGE_PATH=/tmp/models
# Create model storage directory
mkdir -p /tmp/models
# Run database migrations
alembic upgrade head
# Run the service
python main.py
```
### Testing
```bash
# Unit tests
pytest tests/unit/ -v
# Integration tests (requires services)
pytest tests/integration/ -v
# WebSocket tests
pytest tests/websocket/ -v
# Test with coverage
pytest --cov=app tests/ --cov-report=html
```
### WebSocket Testing
```python
# Test WebSocket connection
import asyncio
import websockets
import json
async def test_training_progress():
uri = "ws://localhost:8004/api/v1/training/ws/job-id-here"
async with websockets.connect(uri) as websocket:
while True:
message = await websocket.recv()
data = json.loads(message)
print(f"Progress: {data['progress']['percentage']}%")
print(f"Step: {data['progress']['current_step']}")
if data['type'] == 'training_completed':
print("Training finished!")
break
asyncio.run(test_training_progress())
```
## POI Feature Integration
### How POI Features Enhance Training
The Training Service integrates location-based POI features from the External Service to improve forecast accuracy:
**POI Features Included:**
- `school_density` - Number of schools within 1km radius
- `office_density` - Number of offices and business centers nearby
- `residential_density` - Residential area proximity
- `transport_hub_proximity` - Distance to metro, bus, train stations
- `commercial_zone_score` - Commercial activity in the area
- `restaurant_density` - Nearby restaurants and cafes
- `competitor_proximity` - Distance to competing bakeries
- And 11+ more location-based features
**Integration Process:**
1. **Fetch POI Context** - Retrieve tenant's POI features from External Service (`/poi-context/{tenant_id}`)
2. **Extract ML Features** - Parse `ml_features` JSON object from POI context
3. **Merge with Training Data** - Add POI features as additional columns in training dataframe
4. **Prophet Training** - Include POI features as regressors in Prophet model
5. **Feature Importance** - Track which POI features most impact predictions
**Example POI Feature Integration:**
```python
from app.ml.poi_feature_integrator import POIFeatureIntegrator
# Initialize POI integrator
poi_integrator = POIFeatureIntegrator(external_service_url)
# Fetch and merge POI features
poi_features = await poi_integrator.fetch_poi_features(tenant_id)
training_df = poi_integrator.merge_poi_features(training_df, poi_features)
# POI features now available as columns:
# training_df['school_density'], training_df['office_density'], etc.
# Add POI features as Prophet regressors
for feature_name in poi_features.keys():
prophet_model.add_regressor(feature_name)
```
**Endpoint Used:**
- `GET {EXTERNAL_SERVICE_URL}/poi-context/{tenant_id}` - Fetch POI features
2025-11-06 11:04:50 +01:00
## Integration Points
### Dependencies (Services Called)
- **Sales Service** - Fetch historical sales data for training
- **External Service** - Fetch weather, traffic, holiday, and POI feature data
2025-11-06 11:04:50 +01:00
- **PostgreSQL** - Store job queue, models, metrics, logs
- **RabbitMQ** - Publish training completion events
- **File System** - Store model artifacts
### Dependents (Services That Call This)
- **Forecasting Service** - Load trained models for predictions
- **Orchestrator Service** - Trigger scheduled training jobs
- **Frontend Dashboard** - Display training progress and model metrics
- **AI Insights Service** - Analyze model performance patterns
## Security Measures
### Data Protection
- **Tenant Isolation** - All training jobs scoped to tenant_id
- **Model Access Control** - Only tenant can access their models
- **Input Validation** - Validate all training parameters
- **Rate Limiting** - Prevent training job spam
### Model Security
- **Model Checksums** - SHA-256 hash verification for artifacts
- **Version Control** - Track all model versions with audit trail
- **Access Logging** - Log all model access and deployment
- **Secure Storage** - Model files stored with restricted permissions
### WebSocket Security
- **JWT Authentication** - Authenticate WebSocket connections
- **Connection Limits** - Max connections per tenant
- **Message Validation** - Validate all WebSocket messages
- **Heartbeat Monitoring** - Detect and close stale connections
## Performance Optimization
### Training Performance
1. **Parallel Processing** - Train multiple products concurrently
2. **Data Caching** - Cache fetched external data across products
3. **Incremental Training** - Only retrain changed products
4. **Resource Limits** - CPU/memory limits per training job
5. **Priority Queue** - Prioritize important products first
### Storage Optimization
1. **Model Compression** - Compress model artifacts (gzip)
2. **Old Model Cleanup** - Automatic deletion after retention period
3. **Version Limits** - Keep only N most recent versions
4. **Deduplication** - Avoid storing identical models
### WebSocket Optimization
1. **Message Batching** - Batch progress updates (every 2 seconds)
2. **Connection Pooling** - Reuse WebSocket connections
3. **Compression** - Enable WebSocket message compression
4. **Heartbeat** - Keep connections alive efficiently
## Troubleshooting
### Common Issues
**Issue**: Training jobs stuck in "pending" status
- **Cause**: Max concurrent jobs reached or worker process crashed
- **Solution**: Check `MAX_CONCURRENT_JOBS` setting, restart service
**Issue**: WebSocket connection drops during training
- **Cause**: Network timeout or client disconnection
- **Solution**: Implement auto-reconnect logic in client
**Issue**: "Insufficient data" errors for many products
- **Cause**: Products need 30+ days of sales history
- **Solution**: Import more historical sales data or reduce `MIN_TRAINING_DATA_DAYS`
**Issue**: Low model accuracy (<70%)
- **Cause**: Insufficient data, outliers, or changing business patterns
- **Solution**: Clean outliers, add more features, or manually adjust Prophet params
### Debug Mode
```bash
# Enable detailed logging
export LOG_LEVEL=DEBUG
export PROPHET_VERBOSE=1
# Enable training profiling
export ENABLE_PROFILING=1
# Disable concurrent jobs for debugging
export MAX_CONCURRENT_JOBS=1
```
## Competitive Advantages
1. **One-Click ML** - No data science expertise required
2. **Real-Time Visibility** - WebSocket progress updates unique in bakery software
3. **Continuous Learning** - Automatic weekly retraining
4. **Version Control** - Track and compare all model versions
5. **Production-Ready** - Robust error handling and retry mechanisms
6. **Scalable** - Train models for thousands of products
7. **Spanish Market** - Optimized for Spanish bakery patterns and holidays
## Future Enhancements
- **Hyperparameter Tuning** - Automatic optimization of Prophet parameters
- **A/B Testing** - Deploy multiple models and compare performance
- **Distributed Training** - Scale across multiple machines
- **GPU Acceleration** - Use GPUs for deep learning models
- **AutoML** - Automatic algorithm selection (Prophet vs LSTM vs ARIMA)
- **Model Explainability** - SHAP values to explain predictions
- **Custom Algorithms** - Support for user-provided ML models
- **Transfer Learning** - Use pre-trained models from similar bakeries
---
**For VUE Madrid Business Plan**: The Training Service demonstrates advanced ML engineering capabilities with automated pipeline management and real-time monitoring. The ability to continuously improve forecast accuracy without manual intervention represents significant operational efficiency and competitive advantage. This self-learning system is a key differentiator in the bakery software market and showcases technical innovation suitable for EU technology grants and investor presentations.