Files
bakery-ia/services/data/app/external/madrid_opendata.py

1016 lines
47 KiB
Python
Raw Normal View History

2025-07-18 11:51:43 +02:00
# ================================================================
2025-07-18 19:55:57 +02:00
# services/data/app/external/madrid_opendata.py - FIXED XML PARSER
2025-07-18 11:51:43 +02:00
# ================================================================
2025-07-18 19:55:57 +02:00
"""Madrid Open Data API client with fixed XML parser for actual structure"""
2025-07-18 11:51:43 +02:00
import math
2025-07-18 19:16:45 +02:00
import xml.etree.ElementTree as ET
2025-07-18 11:51:43 +02:00
from typing import List, Dict, Any, Optional
from datetime import datetime, timedelta
import structlog
2025-07-18 19:55:57 +02:00
import re
2025-07-18 11:51:43 +02:00
from app.external.base_client import BaseAPIClient
from app.core.config import settings
2025-07-19 11:37:32 +02:00
import pyproj
2025-07-18 11:51:43 +02:00
logger = structlog.get_logger()
class MadridOpenDataClient(BaseAPIClient):
def __init__(self):
super().__init__(
2025-07-18 19:55:57 +02:00
base_url="https://datos.madrid.es",
api_key=None
2025-07-18 11:51:43 +02:00
)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# WORKING Madrid traffic endpoints (verified)
self.traffic_endpoints = [
# Primary working endpoint
"https://datos.madrid.es/egob/catalogo/202087-0-trafico-intensidad.xml",
]
2025-07-18 11:51:43 +02:00
async def get_current_traffic(self, latitude: float, longitude: float) -> Optional[Dict[str, Any]]:
2025-07-18 19:55:57 +02:00
"""Get current traffic data for location using working Madrid endpoints"""
2025-07-18 11:51:43 +02:00
try:
2025-07-18 19:55:57 +02:00
logger.debug("Fetching Madrid traffic data", lat=latitude, lon=longitude)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# Try the working endpoint
for endpoint in self.traffic_endpoints:
try:
logger.debug("Trying traffic endpoint", endpoint=endpoint)
traffic_data = await self._fetch_traffic_xml_data(endpoint)
if traffic_data:
logger.info("Successfully fetched Madrid traffic data",
endpoint=endpoint,
points=len(traffic_data))
# Find nearest traffic measurement point
nearest_point = self._find_nearest_traffic_point(latitude, longitude, traffic_data)
if nearest_point:
parsed_data = self._parse_traffic_measurement(nearest_point)
logger.debug("Successfully parsed real Madrid traffic data",
point_name=nearest_point.get('descripcion'),
point_id=nearest_point.get('idelem'))
return parsed_data
else:
logger.debug("No nearby traffic points found",
lat=latitude, lon=longitude,
closest_distance=self._get_closest_distance(latitude, longitude, traffic_data))
except Exception as e:
logger.debug("Failed to fetch from endpoint", endpoint=endpoint, error=str(e))
continue
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# If no real data available, use synthetic data
logger.info("No nearby Madrid traffic points found, using synthetic data")
2025-07-18 11:51:43 +02:00
return await self._generate_synthetic_traffic(latitude, longitude)
except Exception as e:
2025-07-18 19:55:57 +02:00
logger.error("Failed to get current traffic", error=str(e))
2025-07-18 19:16:45 +02:00
return await self._generate_synthetic_traffic(latitude, longitude)
2025-07-18 19:55:57 +02:00
async def _fetch_traffic_xml_data(self, endpoint: str) -> Optional[List[Dict[str, Any]]]:
"""Fetch and parse Madrid traffic XML data"""
2025-07-18 19:16:45 +02:00
try:
2025-07-18 19:55:57 +02:00
xml_content = await self._fetch_xml_content_robust(endpoint)
2025-07-18 19:16:45 +02:00
if not xml_content:
2025-07-18 19:55:57 +02:00
logger.debug("No XML content received", endpoint=endpoint)
2025-07-18 19:16:45 +02:00
return None
2025-07-18 19:55:57 +02:00
# Log XML structure for debugging
logger.debug("Madrid XML content preview",
length=len(xml_content),
first_500=xml_content[:500] if len(xml_content) > 500 else xml_content)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# Parse Madrid traffic XML with the correct structure
traffic_points = self._parse_madrid_traffic_xml(xml_content)
if traffic_points:
logger.debug("Successfully parsed Madrid traffic XML", points=len(traffic_points))
return traffic_points
else:
logger.warning("No traffic points found in XML", endpoint=endpoint)
return None
except Exception as e:
logger.error("Error fetching traffic XML data", endpoint=endpoint, error=str(e))
return None
def _parse_madrid_traffic_xml(self, xml_content: str) -> List[Dict[str, Any]]:
"""Parse Madrid traffic XML with correct structure (<pms><pm>...</pm></pms>)"""
traffic_points = []
try:
# Clean the XML to handle undefined entities and encoding issues
cleaned_xml = self._clean_madrid_xml(xml_content)
# Parse XML
root = ET.fromstring(cleaned_xml)
# Log XML structure
logger.debug("Madrid XML structure",
root_tag=root.tag,
children_count=len(list(root)))
# Madrid uses <pms> root with <pm> children
if root.tag == 'pms':
pm_elements = root.findall('pm')
logger.debug("Found PM elements", count=len(pm_elements))
for pm in pm_elements:
try:
traffic_point = self._extract_madrid_pm_element(pm)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# Validate essential data (coordinates and ID)
if (traffic_point.get('latitude') and
traffic_point.get('longitude') and
traffic_point.get('idelem')):
traffic_points.append(traffic_point)
# Log first few points for debugging
if len(traffic_points) <= 3:
logger.debug("Sample traffic point",
id=traffic_point['idelem'],
lat=traffic_point['latitude'],
lon=traffic_point['longitude'],
intensity=traffic_point.get('intensidad'))
except Exception as e:
logger.debug("Error parsing PM element", error=str(e))
continue
else:
logger.warning("Unexpected XML root tag", root_tag=root.tag)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
logger.debug("Madrid traffic XML parsing completed", valid_points=len(traffic_points))
2025-07-18 19:16:45 +02:00
return traffic_points
except ET.ParseError as e:
2025-07-18 19:55:57 +02:00
logger.warning("Failed to parse Madrid XML", error=str(e))
# Try regex extraction as fallback
return self._extract_traffic_data_regex(xml_content)
2025-07-18 19:16:45 +02:00
except Exception as e:
2025-07-18 19:55:57 +02:00
logger.error("Error in Madrid traffic XML parsing", error=str(e))
return []
def _clean_madrid_xml(self, xml_content: str) -> str:
"""Clean Madrid XML to handle undefined entities and encoding issues"""
try:
# Remove BOM if present
xml_content = xml_content.lstrip('\ufeff')
# Remove or replace undefined entities that cause parsing errors
# Common undefined entities in Madrid data
xml_content = xml_content.replace('&nbsp;', ' ')
xml_content = xml_content.replace('&copy;', '©')
xml_content = xml_content.replace('&reg;', '®')
xml_content = xml_content.replace('&trade;', '')
# Fix unescaped ampersands (but not already escaped ones)
xml_content = re.sub(r'&(?![a-zA-Z0-9#]{1,10};)', '&amp;', xml_content)
# Remove invalid control characters
xml_content = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]', '', xml_content)
# Handle Spanish characters that might be causing issues
spanish_chars = {
'ñ': 'n', 'Ñ': 'N',
'á': 'a', 'é': 'e', 'í': 'i', 'ó': 'o', 'ú': 'u',
'Á': 'A', 'É': 'E', 'Í': 'I', 'Ó': 'O', 'Ú': 'U',
'ü': 'u', 'Ü': 'U'
}
for spanish_char, replacement in spanish_chars.items():
xml_content = xml_content.replace(spanish_char, replacement)
return xml_content
except Exception as e:
logger.warning("Error cleaning Madrid XML", error=str(e))
return xml_content
def _extract_madrid_pm_element(self, pm_element) -> Dict[str, Any]:
2025-07-19 11:37:32 +02:00
"""Extract traffic data from Madrid <pm> element with proper coordinate conversion"""
2025-07-18 19:55:57 +02:00
try:
# Based on the actual Madrid XML structure shown in logs
point_data = {}
2025-07-19 11:37:32 +02:00
utm_x = None
utm_y = None
2025-07-18 19:55:57 +02:00
# Extract all child elements
for child in pm_element:
tag = child.tag
text = child.text.strip() if child.text else ''
if tag == 'idelem':
point_data['idelem'] = text
elif tag == 'descripcion':
point_data['descripcion'] = text
elif tag == 'intensidad':
point_data['intensidad'] = self._safe_int(text)
elif tag == 'ocupacion':
point_data['ocupacion'] = self._safe_float(text)
elif tag == 'carga':
point_data['carga'] = self._safe_int(text)
elif tag == 'nivelServicio':
point_data['nivelServicio'] = self._safe_int(text)
elif tag == 'st_x':
2025-07-19 11:37:32 +02:00
# Store UTM X coordinate for later conversion
utm_x = text
point_data['utm_x'] = text # Keep original for debugging
2025-07-18 19:55:57 +02:00
elif tag == 'st_y':
2025-07-19 11:37:32 +02:00
# Store UTM Y coordinate for later conversion
utm_y = text
point_data['utm_y'] = text # Keep original for debugging
2025-07-18 19:55:57 +02:00
elif tag == 'error':
point_data['error'] = text
elif tag == 'subarea':
point_data['subarea'] = text
elif tag == 'accesoAsociado':
point_data['accesoAsociado'] = text
elif tag == 'intensidadSat':
point_data['intensidadSat'] = self._safe_int(text)
2025-07-19 11:37:32 +02:00
# Convert UTM coordinates to lat/lon if both are available
if utm_x and utm_y:
latitude, longitude = self._convert_utm_coordinates_accurate(utm_x, utm_y)
if latitude is not None and longitude is not None:
# Validate that coordinates are actually in Madrid area
if self._validate_madrid_coordinates(latitude, longitude):
point_data['latitude'] = latitude
point_data['longitude'] = longitude
# Log first few successful conversions for verification
if len(getattr(self, '_conversion_log_count', [])) < 3:
if not hasattr(self, '_conversion_log_count'):
self._conversion_log_count = []
self._conversion_log_count.append(1)
logger.debug("Successful UTM conversion",
idelem=point_data.get('idelem'),
utm_x=utm_x,
utm_y=utm_y,
latitude=latitude,
longitude=longitude,
descripcion=point_data.get('descripcion'))
else:
# Log invalid coordinates for debugging
logger.debug("Invalid Madrid coordinates after conversion",
idelem=point_data.get('idelem'),
utm_x=utm_x,
utm_y=utm_y,
converted_lat=latitude,
converted_lon=longitude,
descripcion=point_data.get('descripcion'))
# Don't include this point - return empty dict
return {}
else:
# Conversion failed
logger.debug("UTM conversion failed",
idelem=point_data.get('idelem'),
utm_x=utm_x,
utm_y=utm_y)
return {}
else:
# Missing coordinates
logger.debug("Missing UTM coordinates",
idelem=point_data.get('idelem'),
has_utm_x=utm_x is not None,
has_utm_y=utm_y is not None)
return {}
2025-07-18 19:55:57 +02:00
return point_data
except Exception as e:
logger.debug("Error extracting Madrid PM element", error=str(e))
return {}
2025-07-19 11:37:32 +02:00
2025-07-18 19:55:57 +02:00
2025-07-19 11:37:32 +02:00
def _convert_utm_coordinates_accurate(self, utm_x_str: str, utm_y_str: str) -> tuple[Optional[float], Optional[float]]:
"""Convert UTM coordinates to lat/lon using accurate pyproj library"""
2025-07-18 19:55:57 +02:00
try:
utm_x = float(utm_x_str.replace(',', '.'))
utm_y = float(utm_y_str.replace(',', '.'))
2025-07-19 11:37:32 +02:00
# Define UTM Zone 30N projection (EPSG:25830)
utm_proj = pyproj.Proj(proj='utm', zone=30, ellps='WGS84', preserve_units=False)
# Convert to latitude/longitude
longitude, latitude = utm_proj(utm_x, utm_y, inverse=True)
return round(latitude, 6), round(longitude, 6)
except (ValueError, TypeError, Exception):
return None, None
def _validate_madrid_coordinates(self, latitude: float, longitude: float) -> bool:
"""Validate that converted coordinates are actually in Madrid area"""
# Madrid bounds (expanded slightly to include metro area)
madrid_lat_min, madrid_lat_max = 40.31, 40.56
madrid_lon_min, madrid_lon_max = -3.89, -3.51
return (madrid_lat_min <= latitude <= madrid_lat_max and
madrid_lon_min <= longitude <= madrid_lon_max)
2025-07-18 19:55:57 +02:00
def _safe_int(self, value_str: str) -> int:
"""Safely convert string to int"""
try:
return int(float(value_str.replace(',', '.')))
except (ValueError, TypeError):
return 0
def _safe_float(self, value_str: str) -> float:
"""Safely convert string to float"""
try:
return float(value_str.replace(',', '.'))
except (ValueError, TypeError):
return 0.0
async def _fetch_xml_content_robust(self, url: str) -> Optional[str]:
"""Fetch XML content with robust headers for Madrid endpoints"""
2025-07-18 19:16:45 +02:00
try:
import httpx
2025-07-18 19:55:57 +02:00
# Headers optimized for Madrid Open Data
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/xml,text/xml,*/*',
'Accept-Language': 'es-ES,es;q=0.9,en;q=0.8',
'Accept-Encoding': 'gzip, deflate, br',
'Cache-Control': 'no-cache',
'Referer': 'https://datos.madrid.es/'
}
async with httpx.AsyncClient(
timeout=30.0,
follow_redirects=True,
headers=headers
) as client:
logger.debug("Fetching XML from Madrid endpoint", url=url)
2025-07-18 19:16:45 +02:00
response = await client.get(url)
2025-07-18 19:55:57 +02:00
logger.debug("Madrid API response",
status=response.status_code,
content_type=response.headers.get('content-type'),
content_length=len(response.content))
if response.status_code == 200:
try:
content = response.text
if content and len(content) > 100:
return content
except UnicodeDecodeError:
# Try manual encoding for Spanish content
for encoding in ['utf-8', 'latin-1', 'windows-1252', 'iso-8859-1']:
try:
content = response.content.decode(encoding)
if content and len(content) > 100:
logger.debug("Successfully decoded with encoding", encoding=encoding)
return content
except UnicodeDecodeError:
continue
return None
2025-07-18 19:16:45 +02:00
except Exception as e:
2025-07-18 19:55:57 +02:00
logger.warning("Failed to fetch Madrid XML content", url=url, error=str(e))
2025-07-18 11:51:43 +02:00
return None
2025-07-18 19:55:57 +02:00
def _extract_traffic_data_regex(self, xml_content: str) -> List[Dict[str, Any]]:
"""Extract traffic data using regex when XML parsing fails"""
traffic_points = []
try:
# Pattern to match Madrid PM elements
pm_pattern = r'<pm>(.*?)</pm>'
pm_matches = re.findall(pm_pattern, xml_content, re.DOTALL)
for pm_content in pm_matches:
try:
# Extract individual fields
idelem_match = re.search(r'<idelem>(.*?)</idelem>', pm_content)
intensidad_match = re.search(r'<intensidad>(.*?)</intensidad>', pm_content)
st_x_match = re.search(r'<st_x>(.*?)</st_x>', pm_content)
st_y_match = re.search(r'<st_y>(.*?)</st_y>', pm_content)
descripcion_match = re.search(r'<descripcion>(.*?)</descripcion>', pm_content)
if idelem_match and st_x_match and st_y_match:
idelem = idelem_match.group(1)
st_x = st_x_match.group(1)
st_y = st_y_match.group(1)
intensidad = intensidad_match.group(1) if intensidad_match else '0'
descripcion = descripcion_match.group(1) if descripcion_match else f'Point {idelem}'
# Convert coordinates
longitude = self._convert_utm_to_lon(st_x)
latitude = self._convert_utm_to_lat(st_y)
if latitude and longitude:
traffic_point = {
'idelem': idelem,
'descripcion': descripcion,
'intensidad': self._safe_int(intensidad),
'latitude': latitude,
'longitude': longitude,
'ocupacion': 0,
'carga': 0,
'nivelServicio': 0,
'error': 'N'
}
traffic_points.append(traffic_point)
except Exception as e:
logger.debug("Error parsing regex PM match", error=str(e))
continue
logger.debug("Regex extraction results", count=len(traffic_points))
return traffic_points
except Exception as e:
logger.error("Error in regex extraction", error=str(e))
return []
def _get_closest_distance(self, latitude: float, longitude: float, traffic_data: List[Dict]) -> float:
"""Get distance to closest traffic point for debugging"""
if not traffic_data:
return float('inf')
min_distance = float('inf')
for point in traffic_data:
if point.get('latitude') and point.get('longitude'):
distance = self._calculate_distance(
latitude, longitude,
point['latitude'], point['longitude']
)
min_distance = min(min_distance, distance)
return min_distance
2025-07-18 19:16:45 +02:00
def _find_nearest_traffic_point(self, latitude: float, longitude: float, traffic_data: List[Dict]) -> Optional[Dict]:
"""Find the nearest traffic measurement point to given coordinates"""
if not traffic_data:
return None
min_distance = float('inf')
nearest_point = None
for point in traffic_data:
2025-07-18 19:55:57 +02:00
if point.get('latitude') and point.get('longitude'):
2025-07-18 19:16:45 +02:00
distance = self._calculate_distance(
latitude, longitude,
point['latitude'], point['longitude']
)
if distance < min_distance:
min_distance = distance
nearest_point = point
2025-07-18 19:55:57 +02:00
# Madrid area search radius (15km)
if nearest_point and min_distance <= 15.0:
logger.debug("Found nearest Madrid traffic point",
2025-07-18 19:16:45 +02:00
distance_km=min_distance,
2025-07-18 19:55:57 +02:00
point_name=nearest_point.get('descripcion'),
point_id=nearest_point.get('idelem'))
2025-07-18 19:16:45 +02:00
return nearest_point
2025-07-18 19:55:57 +02:00
logger.debug("No nearby Madrid traffic points found",
min_distance=min_distance,
total_points=len(traffic_data))
2025-07-18 19:16:45 +02:00
return None
def _calculate_distance(self, lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""Calculate distance between two coordinates in km using Haversine formula"""
R = 6371 # Earth's radius in km
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat/2) * math.sin(dlat/2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon/2) * math.sin(dlon/2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
distance = R * c
return distance
def _parse_traffic_measurement(self, traffic_point: Dict) -> Dict[str, Any]:
"""Parse Madrid traffic measurement into standardized format"""
try:
# Madrid traffic service levels: 0=fluid, 1=dense, 2=congested, 3=cut
service_level_map = {
0: "low",
1: "medium",
2: "high",
3: "blocked"
}
2025-07-18 19:55:57 +02:00
service_level = traffic_point.get('nivelServicio', 0)
2025-07-18 19:16:45 +02:00
2025-07-18 19:55:57 +02:00
# Estimate speed based on service level and road type
if service_level == 0: # Fluid
average_speed = 45
elif service_level == 1: # Dense
average_speed = 25
elif service_level == 2: # Congested
average_speed = 15
else: # Cut/Blocked
average_speed = 5
2025-07-18 19:16:45 +02:00
congestion_level = service_level_map.get(service_level, "medium")
2025-07-18 19:55:57 +02:00
# Calculate pedestrian estimate based on location
2025-07-18 19:16:45 +02:00
hour = datetime.now().hour
if 13 <= hour <= 15: # Lunch time
pedestrian_multiplier = 2.5
elif 8 <= hour <= 9 or 18 <= hour <= 20: # Rush hours
pedestrian_multiplier = 2.0
else:
pedestrian_multiplier = 1.0
2025-07-18 19:55:57 +02:00
pedestrian_count = int(100 * pedestrian_multiplier)
2025-07-18 19:16:45 +02:00
return {
"date": datetime.now(),
2025-07-18 19:55:57 +02:00
"traffic_volume": traffic_point.get('intensidad', 0),
"pedestrian_count": pedestrian_count,
2025-07-18 19:16:45 +02:00
"congestion_level": congestion_level,
2025-07-18 19:55:57 +02:00
"average_speed": average_speed,
"occupation_percentage": traffic_point.get('ocupacion', 0),
"load_percentage": traffic_point.get('carga', 0),
"measurement_point_id": traffic_point.get('idelem'),
"measurement_point_name": traffic_point.get('descripcion'),
"road_type": "URB",
2025-07-18 19:16:45 +02:00
"source": "madrid_opendata"
}
except Exception as e:
logger.error("Error parsing traffic measurement", error=str(e))
return self._get_default_traffic_data()
def _get_default_traffic_data(self) -> Dict[str, Any]:
"""Get default traffic data when parsing fails"""
return {
"date": datetime.now(),
"traffic_volume": 100,
"pedestrian_count": 150,
"congestion_level": "medium",
"average_speed": 25,
"occupation_percentage": 30,
"load_percentage": 40,
"measurement_point_id": "unknown",
"measurement_point_name": "Unknown location",
"road_type": "URB",
2025-07-18 19:55:57 +02:00
"source": "synthetic"
2025-07-18 19:16:45 +02:00
}
2025-07-18 11:51:43 +02:00
async def _generate_synthetic_traffic(self, latitude: float, longitude: float) -> Dict[str, Any]:
2025-07-18 19:16:45 +02:00
"""Generate realistic Madrid traffic data as fallback"""
2025-07-18 11:51:43 +02:00
now = datetime.now()
hour = now.hour
is_weekend = now.weekday() >= 5
base_traffic = 100
2025-07-18 19:55:57 +02:00
if not is_weekend:
if 7 <= hour <= 9:
2025-07-18 11:51:43 +02:00
traffic_multiplier = 2.2
congestion = "high"
2025-07-18 19:55:57 +02:00
avg_speed = 15
elif 18 <= hour <= 20:
2025-07-18 11:51:43 +02:00
traffic_multiplier = 2.5
congestion = "high"
2025-07-18 19:55:57 +02:00
avg_speed = 12
elif 12 <= hour <= 14:
2025-07-18 11:51:43 +02:00
traffic_multiplier = 1.6
congestion = "medium"
2025-07-18 19:55:57 +02:00
avg_speed = 25
else:
traffic_multiplier = 1.0
2025-07-18 11:51:43 +02:00
congestion = "low"
2025-07-18 19:55:57 +02:00
avg_speed = 40
else:
if 11 <= hour <= 14:
2025-07-18 11:51:43 +02:00
traffic_multiplier = 1.4
congestion = "medium"
2025-07-18 19:55:57 +02:00
avg_speed = 30
2025-07-18 11:51:43 +02:00
else:
traffic_multiplier = 0.8
congestion = "low"
2025-07-18 19:55:57 +02:00
avg_speed = 45
2025-07-18 11:51:43 +02:00
traffic_volume = int(base_traffic * traffic_multiplier)
2025-07-18 19:55:57 +02:00
# Pedestrian calculation
pedestrian_base = 150
if 13 <= hour <= 15:
pedestrian_count = int(pedestrian_base * 2.5)
elif 8 <= hour <= 9 or 18 <= hour <= 20:
pedestrian_count = int(pedestrian_base * 2.0)
else:
pedestrian_count = int(pedestrian_base * 1.0)
2025-07-18 11:51:43 +02:00
return {
"date": now,
"traffic_volume": traffic_volume,
"pedestrian_count": pedestrian_count,
"congestion_level": congestion,
2025-07-18 19:55:57 +02:00
"average_speed": max(10, avg_speed),
2025-07-18 19:16:45 +02:00
"occupation_percentage": min(100, traffic_volume // 2),
"load_percentage": min(100, traffic_volume // 3),
2025-07-18 19:55:57 +02:00
"measurement_point_id": "madrid_synthetic",
"measurement_point_name": "Madrid Centro (Synthetic)",
"road_type": "URB",
2025-07-18 19:16:45 +02:00
"source": "synthetic"
2025-07-18 11:51:43 +02:00
}
2025-07-18 19:55:57 +02:00
async def get_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
2025-07-23 23:25:50 +02:00
"""Get historical traffic data from Madrid Open Data
Args:
latitude: Location latitude
longitude: Location longitude
start_date: Start date for historical data
end_date: End date for historical data
Returns:
List of historical traffic data dictionaries
"""
try:
logger.debug("Fetching Madrid historical traffic data",
lat=latitude, lon=longitude,
start=start_date, end=end_date)
historical_data = []
# Generate historical data using synthetic generation for periods before API availability
# or when real data is not available
if (end_date - start_date).days <= 90: # Reasonable range for synthetic data
historical_data = await self._generate_historical_traffic(latitude, longitude, start_date, end_date)
logger.info("Generated synthetic historical traffic data",
records=len(historical_data))
else:
logger.warning("Date range too large for historical traffic data",
days=(end_date - start_date).days)
return []
# Try to fetch real data if API key is available and for recent dates
if hasattr(self, 'api_key') and self.api_key:
try:
real_data = await self._fetch_real_historical_traffic(latitude, longitude, start_date, end_date)
if real_data:
# Merge real data with synthetic data or replace synthetic data
historical_data = real_data
logger.info("Fetched real historical traffic data",
records=len(real_data))
except Exception as e:
logger.warning("Failed to fetch real historical data, using synthetic", error=str(e))
return historical_data
except Exception as e:
logger.error("Error getting historical traffic data", error=str(e))
return []
async def _fetch_real_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Fetch real historical traffic data from Madrid Open Data portal
Madrid provides historical CSV files by month at:
https://datos.madrid.es/egob/catalogo/[ID]-[YEAR]-[MONTH]-trafico-historico.csv
"""
try:
historical_data = []
current_date = start_date.replace(day=1) # Start from beginning of month
while current_date <= end_date:
try:
# Madrid historical traffic CSV URL pattern
year = current_date.year
month = current_date.month
# Try different URL patterns based on Madrid Open Data structure
historical_urls = [
f"https://datos.madrid.es/egob/catalogo/300217-{year}-{month:02d}-trafico-historico.csv",
f"https://datos.madrid.es/egob/catalogo/trafico-historico-{year}-{month:02d}.csv",
f"https://datos.madrid.es/egob/catalogo/{year}{month:02d}-trafico-historico.csv"
]
for url in historical_urls:
csv_data = await self._fetch_historical_csv(url)
if csv_data:
# Parse CSV and filter by location
month_data = await self._parse_historical_csv(csv_data, latitude, longitude, start_date, end_date)
historical_data.extend(month_data)
logger.debug("Fetched historical data for month",
year=year, month=month, records=len(month_data))
break
# Move to next month
if current_date.month == 12:
current_date = current_date.replace(year=current_date.year + 1, month=1)
else:
current_date = current_date.replace(month=current_date.month + 1)
except Exception as e:
logger.warning("Error fetching data for month",
year=current_date.year, month=current_date.month, error=str(e))
# Move to next month even on error
if current_date.month == 12:
current_date = current_date.replace(year=current_date.year + 1, month=1)
else:
current_date = current_date.replace(month=current_date.month + 1)
return historical_data
except Exception as e:
logger.error("Error fetching real historical traffic data", error=str(e))
return []
async def _fetch_historical_csv(self, url: str) -> Optional[str]:
"""Fetch historical CSV data from Madrid Open Data"""
try:
import httpx
headers = {
'User-Agent': 'Mozilla/5.0 (compatible; Madrid-Traffic-Client/1.0)',
'Accept': 'text/csv,application/csv,text/plain,*/*',
'Accept-Language': 'es-ES,es;q=0.9,en;q=0.8',
}
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
logger.debug("Fetching historical CSV", url=url)
response = await client.get(url)
if response.status_code == 200:
content = response.text
if content and len(content) > 100: # Ensure we got actual data
logger.debug("Successfully fetched CSV",
url=url, size=len(content))
return content
else:
logger.debug("CSV not found", url=url, status=response.status_code)
except Exception as e:
logger.debug("Error fetching CSV", url=url, error=str(e))
return None
async def _parse_historical_csv(self, csv_content: str, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Parse Madrid historical traffic CSV and filter by location and date range"""
try:
import csv
from io import StringIO
historical_records = []
csv_reader = csv.DictReader(StringIO(csv_content), delimiter=';')
# Get the nearest measurement points to our coordinates
measurement_points = await self._get_measurement_points_near_location(latitude, longitude)
target_point_ids = [point['id'] for point in measurement_points[:3]] # Use 3 nearest points
for row in csv_reader:
try:
# Parse Madrid CSV format
# Expected columns: fecha, hora, idelem, intensidad, ocupacion, carga, nivelServicio, etc.
# Extract date and time
if 'fecha' in row and 'hora' in row:
date_str = row.get('fecha', '').strip()
time_str = row.get('hora', '').strip()
# Parse Madrid date format (usually DD/MM/YYYY)
if date_str and time_str:
try:
# Try different date formats
for date_format in ['%d/%m/%Y', '%Y-%m-%d', '%d-%m-%Y']:
try:
record_date = datetime.strptime(f"{date_str} {time_str}", f"{date_format} %H:%M")
break
except ValueError:
continue
else:
continue # Skip if no date format worked
# Check if record is in our date range
if not (start_date <= record_date <= end_date):
continue
except ValueError:
continue
else:
continue
# Check if this record is from a measurement point near our location
point_id = row.get('idelem', '').strip()
if point_id not in target_point_ids:
continue
# Parse traffic data
traffic_record = {
"date": record_date,
"traffic_volume": self._safe_int(row.get('intensidad', '0')),
"occupation_percentage": self._safe_int(row.get('ocupacion', '0')),
"load_percentage": self._safe_int(row.get('carga', '0')),
"service_level": self._safe_int(row.get('nivelServicio', '0')),
"measurement_point_id": point_id,
"measurement_point_name": row.get('descripcion', f'Point {point_id}'),
"road_type": row.get('tipo_elem', 'URB'),
"source": "madrid_opendata_historical"
}
# Calculate derived metrics
service_level = traffic_record['service_level']
if service_level == 0: # Fluid
congestion_level = "low"
avg_speed = 45
pedestrian_multiplier = 1.0
elif service_level == 1: # Dense
congestion_level = "medium"
avg_speed = 25
pedestrian_multiplier = 1.5
elif service_level == 2: # Congested
congestion_level = "high"
avg_speed = 15
pedestrian_multiplier = 2.0
else: # Cut/Blocked
congestion_level = "blocked"
avg_speed = 5
pedestrian_multiplier = 0.5
traffic_record.update({
"congestion_level": congestion_level,
"average_speed": avg_speed,
"pedestrian_count": int(100 * pedestrian_multiplier)
})
historical_records.append(traffic_record)
except Exception as e:
logger.debug("Error parsing CSV row", error=str(e))
continue
return historical_records
except Exception as e:
logger.error("Error parsing historical CSV", error=str(e))
return []
async def _get_measurement_points_near_location(self, latitude: float, longitude: float) -> List[Dict[str, Any]]:
"""Get measurement points near the specified location"""
try:
# Try to fetch current traffic data to get measurement points
current_traffic = await self._fetch_traffic_xml_data(self.traffic_endpoints[0])
if current_traffic:
# Calculate distances and sort by proximity
points_with_distance = []
for point in current_traffic:
if point.get('latitude') and point.get('longitude'):
distance = self._calculate_distance(
latitude, longitude,
point['latitude'], point['longitude']
)
points_with_distance.append({
'id': point.get('idelem'),
'distance': distance,
'latitude': point['latitude'],
'longitude': point['longitude'],
'name': point.get('descripcion', '')
})
# Sort by distance and return closest points
points_with_distance.sort(key=lambda x: x['distance'])
return points_with_distance[:5] # Return 5 closest points
# Fallback: return synthetic point IDs based on Madrid geography
return [
{'id': 'madrid_centro_01', 'distance': 1.0},
{'id': 'madrid_centro_02', 'distance': 2.0},
{'id': 'madrid_centro_03', 'distance': 3.0}
]
except Exception as e:
logger.warning("Error getting measurement points", error=str(e))
return [{'id': 'madrid_default', 'distance': 0.0}]
async def _generate_historical_traffic(self, latitude: float, longitude: float, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Generate synthetic historical traffic data for the specified period
This method creates realistic historical traffic patterns based on:
- Time of day patterns
- Day of week patterns
- Seasonal variations
- Random variations for realism
"""
try:
import random
from datetime import timedelta
historical_data = []
current_date = start_date
# Seed random for consistent but varied data
random.seed(hash(f"{latitude}{longitude}"))
while current_date <= end_date:
# Generate 24 hourly records for each day
for hour in range(24):
record_time = current_date.replace(hour=hour, minute=0, second=0, microsecond=0)
# Base traffic calculation
base_traffic = 100
hour_of_day = record_time.hour
day_of_week = record_time.weekday() # 0=Monday, 6=Sunday
month = record_time.month
# Time of day patterns
if 7 <= hour_of_day <= 9: # Morning rush
traffic_multiplier = 2.2 + random.uniform(-0.3, 0.3)
congestion = "high"
avg_speed = 15 + random.randint(-5, 5)
elif 18 <= hour_of_day <= 20: # Evening rush
traffic_multiplier = 2.5 + random.uniform(-0.4, 0.4)
congestion = "high"
avg_speed = 12 + random.randint(-3, 8)
elif 12 <= hour_of_day <= 14: # Lunch time
traffic_multiplier = 1.6 + random.uniform(-0.2, 0.2)
congestion = "medium"
avg_speed = 25 + random.randint(-5, 10)
elif 22 <= hour_of_day or hour_of_day <= 6: # Night
traffic_multiplier = 0.3 + random.uniform(-0.1, 0.2)
congestion = "low"
avg_speed = 50 + random.randint(-10, 15)
else: # Regular hours
traffic_multiplier = 1.0 + random.uniform(-0.2, 0.2)
congestion = "medium"
avg_speed = 35 + random.randint(-10, 10)
# Weekend adjustments
if day_of_week >= 5: # Weekend
if hour_of_day in [11, 12, 13, 14, 15]: # Weekend afternoon peak
traffic_multiplier *= 1.4
congestion = "medium"
else:
traffic_multiplier *= 0.7
if congestion == "high":
congestion = "medium"
# Seasonal adjustments
if month in [7, 8]: # Summer - less traffic due to vacations
traffic_multiplier *= 0.8
elif month in [11, 12]: # Holiday season - more traffic
traffic_multiplier *= 1.1
# Calculate final values
traffic_volume = max(10, int(base_traffic * traffic_multiplier))
avg_speed = max(10, min(60, avg_speed))
# Pedestrian calculation
pedestrian_base = 150
if 13 <= hour_of_day <= 15: # Lunch time
pedestrian_count = int(pedestrian_base * 2.5 * random.uniform(0.8, 1.2))
elif 8 <= hour_of_day <= 9 or 18 <= hour_of_day <= 20: # Rush hours
pedestrian_count = int(pedestrian_base * 2.0 * random.uniform(0.8, 1.2))
else:
pedestrian_count = int(pedestrian_base * 1.0 * random.uniform(0.5, 1.5))
# Create traffic record
traffic_record = {
"date": record_time,
"traffic_volume": traffic_volume,
"pedestrian_count": pedestrian_count,
"congestion_level": congestion,
"average_speed": avg_speed,
"occupation_percentage": min(100, traffic_volume // 2),
"load_percentage": min(100, traffic_volume // 3),
"measurement_point_id": f"madrid_historical_{hash(f'{latitude}{longitude}') % 1000}",
"measurement_point_name": f"Madrid Historical Point ({latitude:.4f}, {longitude:.4f})",
"road_type": "URB",
"source": "synthetic_historical"
}
historical_data.append(traffic_record)
# Move to next day
current_date += timedelta(days=1)
logger.info("Generated historical traffic data",
records=len(historical_data),
start=start_date,
end=end_date)
return historical_data
except Exception as e:
logger.error("Error generating historical traffic data", error=str(e))
return []
2025-07-18 11:51:43 +02:00
2025-07-18 19:55:57 +02:00
async def get_events(self, latitude: float, longitude: float, radius_km: float = 5.0) -> List[Dict[str, Any]]:
"""Get traffic incidents and events"""
return []