Files
bakery-ia/services/training/app/repositories/training_log_repository.py

507 lines
20 KiB
Python
Raw Normal View History

2025-08-08 09:08:41 +02:00
"""
Training Log Repository
Repository for model training log operations
"""
from typing import Optional, List, Dict, Any
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, and_, text, desc
from datetime import datetime, timedelta
import structlog
from .base import TrainingBaseRepository
from app.models.training import ModelTrainingLog
from shared.database.exceptions import DatabaseError, ValidationError
logger = structlog.get_logger()
class TrainingLogRepository(TrainingBaseRepository):
"""Repository for training log operations"""
def __init__(self, session: AsyncSession, cache_ttl: Optional[int] = 300):
# Training logs change frequently, shorter cache time (5 minutes)
super().__init__(ModelTrainingLog, session, cache_ttl)
async def create_training_log(self, log_data: Dict[str, Any]) -> ModelTrainingLog:
"""Create a new training log entry"""
try:
# Validate log data
validation_result = self._validate_training_data(
log_data,
["job_id", "tenant_id", "status"]
)
if not validation_result["is_valid"]:
raise ValidationError(f"Invalid training log data: {validation_result['errors']}")
# Set default values
if "progress" not in log_data:
log_data["progress"] = 0
if "current_step" not in log_data:
log_data["current_step"] = "initializing"
# Create log entry
log_entry = await self.create(log_data)
logger.info("Training log created",
job_id=log_entry.job_id,
tenant_id=log_entry.tenant_id,
status=log_entry.status)
return log_entry
except ValidationError:
raise
except Exception as e:
logger.error("Failed to create training log",
job_id=log_data.get("job_id"),
error=str(e))
raise DatabaseError(f"Failed to create training log: {str(e)}")
async def get_log_by_job_id(self, job_id: str) -> Optional[ModelTrainingLog]:
"""Get training log by job ID"""
return await self.get_by_job_id(job_id)
async def update_log_progress(
self,
job_id: str,
progress: int,
current_step: str = None,
status: str = None
) -> Optional[ModelTrainingLog]:
"""Update training log progress"""
try:
update_data = {"progress": progress, "updated_at": datetime.now()}
if current_step:
update_data["current_step"] = current_step
if status:
update_data["status"] = status
log_entry = await self.get_by_job_id(job_id)
if not log_entry:
logger.error(f"Training log not found for job {job_id}")
return None
updated_log = await self.update(log_entry.id, update_data)
logger.debug("Training log progress updated",
job_id=job_id,
progress=progress,
step=current_step)
return updated_log
except Exception as e:
logger.error("Failed to update training log progress",
job_id=job_id,
error=str(e))
raise DatabaseError(f"Failed to update progress: {str(e)}")
async def complete_training_log(
self,
job_id: str,
results: Dict[str, Any] = None,
error_message: str = None
) -> Optional[ModelTrainingLog]:
"""Mark training log as completed or failed"""
try:
status = "failed" if error_message else "completed"
update_data = {
"status": status,
"progress": 100 if status == "completed" else None,
"end_time": datetime.now(),
"updated_at": datetime.now()
}
if results:
update_data["results"] = results
if error_message:
update_data["error_message"] = error_message
log_entry = await self.get_by_job_id(job_id)
if not log_entry:
logger.error(f"Training log not found for job {job_id}")
return None
updated_log = await self.update(log_entry.id, update_data)
logger.info("Training log completed",
job_id=job_id,
status=status,
has_results=bool(results))
return updated_log
except Exception as e:
logger.error("Failed to complete training log",
job_id=job_id,
error=str(e))
raise DatabaseError(f"Failed to complete training log: {str(e)}")
async def get_logs_by_tenant(
self,
tenant_id: str,
status: str = None,
skip: int = 0,
limit: int = 100
) -> List[ModelTrainingLog]:
"""Get training logs for a tenant"""
try:
filters = {"tenant_id": tenant_id}
if status:
filters["status"] = status
return await self.get_multi(
filters=filters,
skip=skip,
limit=limit,
order_by="created_at",
order_desc=True
)
except Exception as e:
logger.error("Failed to get logs by tenant",
tenant_id=tenant_id,
error=str(e))
raise DatabaseError(f"Failed to get training logs: {str(e)}")
async def get_active_jobs(self, tenant_id: str = None) -> List[ModelTrainingLog]:
"""Get currently running training jobs"""
try:
filters = {"status": "running"}
if tenant_id:
filters["tenant_id"] = tenant_id
return await self.get_multi(
filters=filters,
order_by="start_time",
order_desc=True
)
except Exception as e:
logger.error("Failed to get active jobs",
tenant_id=tenant_id,
error=str(e))
raise DatabaseError(f"Failed to get active jobs: {str(e)}")
async def cancel_job(self, job_id: str, cancelled_by: str = None) -> Optional[ModelTrainingLog]:
"""Cancel a training job"""
try:
update_data = {
"status": "cancelled",
"end_time": datetime.now(),
"updated_at": datetime.now()
}
if cancelled_by:
update_data["error_message"] = f"Cancelled by {cancelled_by}"
log_entry = await self.get_by_job_id(job_id)
if not log_entry:
logger.error(f"Training log not found for job {job_id}")
return None
# Only cancel if job is still running
if log_entry.status not in ["pending", "running"]:
logger.warning(f"Cannot cancel job {job_id} with status {log_entry.status}")
return log_entry
updated_log = await self.update(log_entry.id, update_data)
logger.info("Training job cancelled",
job_id=job_id,
cancelled_by=cancelled_by)
return updated_log
except Exception as e:
logger.error("Failed to cancel training job",
job_id=job_id,
error=str(e))
raise DatabaseError(f"Failed to cancel job: {str(e)}")
async def get_job_statistics(self, tenant_id: str = None) -> Dict[str, Any]:
"""Get training job statistics"""
try:
base_filters = {}
if tenant_id:
base_filters["tenant_id"] = tenant_id
# Get counts by status
total_jobs = await self.count(filters=base_filters)
completed_jobs = await self.count(filters={**base_filters, "status": "completed"})
failed_jobs = await self.count(filters={**base_filters, "status": "failed"})
running_jobs = await self.count(filters={**base_filters, "status": "running"})
pending_jobs = await self.count(filters={**base_filters, "status": "pending"})
# Get recent activity (jobs in last 7 days)
seven_days_ago = datetime.now() - timedelta(days=7)
recent_jobs = len(await self.get_records_by_date_range(
seven_days_ago,
datetime.now(),
limit=1000 # High limit to get accurate count
))
# Calculate success rate
finished_jobs = completed_jobs + failed_jobs
success_rate = (completed_jobs / finished_jobs * 100) if finished_jobs > 0 else 0
return {
"total_jobs": total_jobs,
"completed_jobs": completed_jobs,
"failed_jobs": failed_jobs,
"running_jobs": running_jobs,
"pending_jobs": pending_jobs,
"cancelled_jobs": total_jobs - completed_jobs - failed_jobs - running_jobs - pending_jobs,
"success_rate": round(success_rate, 2),
"recent_jobs_7d": recent_jobs
}
except Exception as e:
logger.error("Failed to get job statistics",
tenant_id=tenant_id,
error=str(e))
return {
"total_jobs": 0,
"completed_jobs": 0,
"failed_jobs": 0,
"running_jobs": 0,
"pending_jobs": 0,
"cancelled_jobs": 0,
"success_rate": 0.0,
"recent_jobs_7d": 0
}
async def cleanup_old_logs(self, days_old: int = 90) -> int:
"""Clean up old completed/failed training logs"""
return await self.cleanup_old_records(
days_old=days_old,
status_filter=None # Clean up all old records regardless of status
)
async def get_job_duration_stats(self, tenant_id: str = None) -> Dict[str, Any]:
"""Get job duration statistics"""
try:
# Use raw SQL for complex duration calculations
tenant_filter = "AND tenant_id = :tenant_id" if tenant_id else ""
params = {"tenant_id": tenant_id} if tenant_id else {}
query = text(f"""
SELECT
AVG(EXTRACT(EPOCH FROM (end_time - start_time))/60) as avg_duration_minutes,
MIN(EXTRACT(EPOCH FROM (end_time - start_time))/60) as min_duration_minutes,
MAX(EXTRACT(EPOCH FROM (end_time - start_time))/60) as max_duration_minutes,
COUNT(*) as completed_jobs_with_duration
FROM model_training_logs
WHERE status = 'completed'
AND start_time IS NOT NULL
AND end_time IS NOT NULL
{tenant_filter}
""")
result = await self.session.execute(query, params)
row = result.fetchone()
if row and row.completed_jobs_with_duration > 0:
return {
"avg_duration_minutes": round(float(row.avg_duration_minutes or 0), 2),
"min_duration_minutes": round(float(row.min_duration_minutes or 0), 2),
"max_duration_minutes": round(float(row.max_duration_minutes or 0), 2),
"completed_jobs_with_duration": int(row.completed_jobs_with_duration)
}
return {
"avg_duration_minutes": 0.0,
"min_duration_minutes": 0.0,
"max_duration_minutes": 0.0,
"completed_jobs_with_duration": 0
}
except Exception as e:
logger.error("Failed to get job duration statistics",
tenant_id=tenant_id,
error=str(e))
return {
"avg_duration_minutes": 0.0,
"min_duration_minutes": 0.0,
"max_duration_minutes": 0.0,
"completed_jobs_with_duration": 0
Fix multiple critical bugs in onboarding training step This commit addresses all identified bugs and issues in the training code path: ## Critical Fixes: - Add get_start_time() method to TrainingLogRepository and fix non-existent method call - Remove duplicate training.started event from API endpoint (trainer publishes the accurate one) - Add missing progress events for 80-100% range (85%, 92%, 94%) to eliminate progress "dead zone" ## High Priority Fixes: - Fix division by zero risk in time estimation with double-check and max() safety - Remove unreachable exception handler in training_operations.py - Simplify WebSocket token refresh logic to only reconnect on actual user session changes ## Medium Priority Fixes: - Fix auto-start training effect with useRef to prevent duplicate starts - Add HTTP polling debounce delay (5s) to prevent race conditions with WebSocket - Extract all magic numbers to centralized constants files: - Backend: services/training/app/core/training_constants.py - Frontend: frontend/src/constants/training.ts - Standardize error logging with exc_info=True on critical errors ## Code Quality Improvements: - All progress percentages now use named constants - All timeouts and intervals now use named constants - Improved code maintainability and readability - Better separation of concerns ## Files Changed: - Backend: training_service.py, trainer.py, training_events.py, progress_tracker.py - Backend: training_operations.py, training_log_repository.py, training_constants.py (new) - Frontend: training.ts (hooks), MLTrainingStep.tsx, training.ts (constants, new) All training progress events now properly flow from 0% to 100% with no gaps.
2025-11-05 13:02:39 +00:00
}
async def get_start_time(self, job_id: str) -> Optional[datetime]:
"""Get the start time for a training job"""
try:
log_entry = await self.get_by_job_id(job_id)
if log_entry and log_entry.start_time:
return log_entry.start_time
return None
except Exception as e:
logger.error("Failed to get start time",
job_id=job_id,
error=str(e))
2026-01-18 09:02:27 +01:00
return None
async def create_job_atomic(
self,
job_id: str,
tenant_id: str,
config: Dict[str, Any] = None
) -> tuple[Optional[ModelTrainingLog], bool]:
"""
Atomically create a training job, respecting the unique constraint.
This method uses INSERT ... ON CONFLICT to handle race conditions
when multiple pods try to create a job for the same tenant simultaneously.
The database constraint (idx_unique_active_training_per_tenant) ensures
only one active job per tenant can exist.
Args:
job_id: Unique job identifier
tenant_id: Tenant identifier
config: Optional job configuration
Returns:
Tuple of (job, created):
- If created: (new_job, True)
- If conflict (existing active job): (existing_job, False)
- If error: raises DatabaseError
"""
try:
# First, try to find an existing active job
existing = await self.get_active_jobs(tenant_id=tenant_id)
pending = await self.get_logs_by_tenant(tenant_id=tenant_id, status="pending", limit=1)
if existing or pending:
# Return existing job
active_job = existing[0] if existing else pending[0]
logger.info("Found existing active job, skipping creation",
existing_job_id=active_job.job_id,
tenant_id=tenant_id,
requested_job_id=job_id)
return (active_job, False)
# Try to create the new job
# If another pod created one in the meantime, the unique constraint will prevent this
log_data = {
"job_id": job_id,
"tenant_id": tenant_id,
"status": "pending",
"progress": 0,
"current_step": "initializing",
"config": config or {}
}
try:
new_job = await self.create_training_log(log_data)
await self.session.commit()
logger.info("Created new training job atomically",
job_id=job_id,
tenant_id=tenant_id)
return (new_job, True)
except Exception as create_error:
error_str = str(create_error).lower()
# Check if this is a unique constraint violation
if "unique" in error_str or "duplicate" in error_str or "constraint" in error_str:
await self.session.rollback()
# Another pod created a job, fetch it
logger.info("Unique constraint hit, fetching existing job",
tenant_id=tenant_id,
requested_job_id=job_id)
existing = await self.get_active_jobs(tenant_id=tenant_id)
pending = await self.get_logs_by_tenant(tenant_id=tenant_id, status="pending", limit=1)
if existing or pending:
active_job = existing[0] if existing else pending[0]
return (active_job, False)
# If still no job found, something went wrong
raise DatabaseError(f"Constraint violation but no active job found: {create_error}")
else:
raise
except DatabaseError:
raise
except Exception as e:
logger.error("Failed to create job atomically",
job_id=job_id,
tenant_id=tenant_id,
error=str(e))
raise DatabaseError(f"Failed to create training job atomically: {str(e)}")
async def recover_stale_jobs(self, stale_threshold_minutes: int = 60) -> List[ModelTrainingLog]:
"""
Find and mark stale running jobs as failed.
This is used during service startup to clean up jobs that were
running when a pod crashed. With multiple replicas, only stale
jobs (not updated recently) should be marked as failed.
Args:
stale_threshold_minutes: Jobs not updated for this long are considered stale
Returns:
List of jobs that were marked as failed
"""
try:
stale_cutoff = datetime.now() - timedelta(minutes=stale_threshold_minutes)
# Find running jobs that haven't been updated recently
query = text("""
SELECT id, job_id, tenant_id, status, updated_at
FROM model_training_logs
WHERE status IN ('running', 'pending')
AND updated_at < :stale_cutoff
""")
result = await self.session.execute(query, {"stale_cutoff": stale_cutoff})
stale_jobs = result.fetchall()
recovered_jobs = []
for row in stale_jobs:
try:
# Mark as failed
update_query = text("""
UPDATE model_training_logs
SET status = 'failed',
error_message = :error_msg,
end_time = :end_time,
updated_at = :updated_at
WHERE id = :id AND status IN ('running', 'pending')
""")
await self.session.execute(update_query, {
"id": row.id,
"error_msg": f"Job recovered as failed - not updated since {row.updated_at.isoformat()}. Pod may have crashed.",
"end_time": datetime.now(),
"updated_at": datetime.now()
})
logger.warning("Recovered stale training job",
job_id=row.job_id,
tenant_id=str(row.tenant_id),
last_updated=row.updated_at.isoformat() if row.updated_at else "unknown")
# Fetch the updated job to return
job = await self.get_by_job_id(row.job_id)
if job:
recovered_jobs.append(job)
except Exception as job_error:
logger.error("Failed to recover individual stale job",
job_id=row.job_id,
error=str(job_error))
if recovered_jobs:
await self.session.commit()
logger.info("Stale job recovery completed",
recovered_count=len(recovered_jobs),
stale_threshold_minutes=stale_threshold_minutes)
return recovered_jobs
except Exception as e:
logger.error("Failed to recover stale jobs",
error=str(e))
await self.session.rollback()
return []