Files

68 lines
2.8 KiB
Python
Raw Permalink Normal View History

2025-07-21 19:48:56 +02:00
# ================================================================
# services/forecasting/app/models/predictions.py
# ================================================================
"""
Additional prediction models for the forecasting service
"""
from sqlalchemy import Column, String, Integer, Float, DateTime, Boolean, Text, JSON
from sqlalchemy.dialects.postgresql import UUID
from datetime import datetime, timezone
import uuid
from shared.database.base import Base
class ModelPerformanceMetric(Base):
"""Track model performance over time"""
__tablename__ = "model_performance_metrics"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
model_id = Column(UUID(as_uuid=True), nullable=False, index=True)
tenant_id = Column(UUID(as_uuid=True), nullable=False, index=True)
2025-08-14 16:47:34 +02:00
inventory_product_id = Column(UUID(as_uuid=True), nullable=False) # Reference to inventory service
2025-07-21 19:48:56 +02:00
# Performance metrics
mae = Column(Float) # Mean Absolute Error
mape = Column(Float) # Mean Absolute Percentage Error
rmse = Column(Float) # Root Mean Square Error
accuracy_score = Column(Float)
# Evaluation period
evaluation_date = Column(DateTime(timezone=True), nullable=False)
evaluation_period_start = Column(DateTime(timezone=True))
evaluation_period_end = Column(DateTime(timezone=True))
# Metadata
sample_size = Column(Integer)
created_at = Column(DateTime(timezone=True), default=lambda: datetime.now(timezone.utc))
def __repr__(self):
return f"<ModelPerformanceMetric(model_id={self.model_id}, mae={self.mae})>"
class PredictionCache(Base):
"""Cache frequently requested predictions"""
__tablename__ = "prediction_cache"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
cache_key = Column(String(255), unique=True, nullable=False, index=True)
# Cached data
tenant_id = Column(UUID(as_uuid=True), nullable=False, index=True)
2025-08-14 16:47:34 +02:00
inventory_product_id = Column(UUID(as_uuid=True), nullable=False) # Reference to inventory service
2025-07-21 19:48:56 +02:00
location = Column(String(255), nullable=False)
forecast_date = Column(DateTime(timezone=True), nullable=False)
# Cached results
predicted_demand = Column(Float, nullable=False)
confidence_lower = Column(Float, nullable=False)
confidence_upper = Column(Float, nullable=False)
model_id = Column(UUID(as_uuid=True), nullable=False)
# Cache metadata
created_at = Column(DateTime(timezone=True), default=lambda: datetime.now(timezone.utc))
expires_at = Column(DateTime(timezone=True), nullable=False)
hit_count = Column(Integer, default=0)
def __repr__(self):
2025-08-14 16:47:34 +02:00
return f"<PredictionCache(key={self.cache_key}, inventory_product_id={self.inventory_product_id})>"